Light scattering properties of quartz particles in seawater

Vladimir I. Haltrin,[†] and Eugeny B. Shybanov °

[†] Naval Research Laboratory, Ocean Optics Section, Code 7333 Stennis Space Center, MS 39529, USA phone: 228-688-4528, fax: 228-688-4189, e-mail: <haltrin@nrlssc.navy.mil>

^o Marine Hydrophysical Institute, Ukrainian Academy of Sciences, 2 Kapitanskaya St., Sevastopol, 335000, Ukraine

Abstract — Existing models of seawater optical properties [1] usually do not explicitly include quartz particles. These models are good for open ocean waters and biologically stable coastal waters but fail to adequately predict optical properties of coastal waters with shallow sandy bottoms. In this paper we try to fill this gap by extending our previous optical model of quartz suspensions in seawater [2] by including calculations of all inherent optical properties.

INTRODUCTION

In our model we consider quartz to be a non-absorbing scattering matter with a relative refraction index equal to 1.25. The calculations of scattering coefficient for quartz particles with the size parameters ranging from 48 to 20,000 have been performed and published earlier [2]. Here we calculate all inherent optical properties of quartz particles with size parameters ranging from 17.6 to 61,000. To accomplish this task a special Mie scattering program was written in Pascal [3]. This program is capable of computing Mie scattering coefficients on spherical particles with size parameters up to one billion.

CALCULATIONS

To simplify the algorithm we pre-calculated all optical properties of quartz particles for bin sizes given in Tab. 1 and wavelengths corresponding to the AC-9 probe [4]. The calculations were made for 201 particle sizes evenly distributed over bin at 363 scattering angles. The backscattering probability B was obtained by direct numerical integration of the phase function. All results obtained for each bin were averaged. The results of these calculations are presented in Figs. 1-5. Because the spectral dependence of phase functions and other parameters was relatively weak (see Figures 1-5) we averaged all results over all spectral bands and presented them in the form of Tables 2 and 3. These tables give us the following simple algorithm to compute scattering properties of quartz particles suspended in seawater. The input parameters to this algorithm are five concentrations of quartz particles $\{N_i, i = 1, .., 5\}$ corresponding to five size bins given in Table 1.

Probability of backscattering is calculated according to:

$$B = N_0^{-1} \sum_{i=1}^5 N_i \langle B \rangle_i, \qquad N_0 = \sum_{i=1}^5 N_i , \qquad (1)$$

Here N_i is a concentration of quartz particles in *i*-nth bin

and N_0 is a total concentration of particles (in m⁻³).

Table 1. Bin sizes in µm adopted from [2, 5].

Bin #	Bottom, µm	top, µm	middle, µm
1	2.0	9.0	4.2
2	9.0	41.2	19.2
3	41.2	189.5	88.4
4	189.5	870.6	406.1
5	870.6	4000.0	1866.1

Table 2. Optical properties [6] of quartz suspensionsin chosen bins averaged over AC-9 wavelengths.

i	$\langle B angle_i$	σ_i, m^2	$\langle \mathcal{Q}_{\scriptscriptstyle sca} angle_{\scriptscriptstyle i}$	$\left\langle \overline{\cos \theta} Q_{\scriptscriptstyle sca} \right\rangle_i$
1	1.2e-3	2.3e-10	2.146	0.880
2	8.5e-5	4.6e-9	2.051	0.904
3	3.8e-6	9.6e-8	2.018	0.912
4	1.7e-7	2.0e-6	2.006	0.914
5	8.2e-9	4.2e-5	2.001	0.915

Fig. 1. Light scattering phase functions of quartz particles averaged over sizes in bin 1.

Scattering b and backscattering b_B coefficients are calculated using the following equations:

$$b = N_0^{-1} \sum_{i=1}^5 N_i \,\sigma_i \,, \quad \sigma_i = \left\langle \pi \, r^2 \, Q_{sca} \right\rangle_i \,, \quad b_B = b \, B \,, \quad (2)$$

Fig. 2. Light scattering phase functions of quartz particles averaged over sizes in bin 2.

Fig. 3. Light scattering phase functions of quartz particles averaged over sizes in bin 3.

here σ_i is a cross-section of scattering by one quartz particle (see Tab. 2) averaged inside each bin size and over AC-9 wavelengths.

The phase function of light scattering by quartz particles with the size distribution $\{N_i\}$ is given by

Fig. 4. Light scattering phase functions of quartz particles averaged over sizes in bin 4.

Fig. 5. Light scattering phase functions of quartz particles averaged over sizes in bin 5.

Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS 2000, 24-28 July 2000, Honolulu, Hawaii, USA, ed. Tammy I. Stein, IEEE Cat. No. 00CH37120, ISBN 0-7803-6359-0, IEEE, Piscataway, NJ, USA, 2000.

$ heta,\circ$	$\operatorname{Ln}(\tilde{p}_1)$	$\operatorname{Ln}(\tilde{p}_2)$	$Ln(\tilde{p}_3)$	$\operatorname{Ln}(\tilde{p}_4)$	$\operatorname{Ln}(\tilde{p}_5)$
0	8.150	11.157	14.197	17.243	20.291
2	5.540	4.066	3.157	2.720	2.586
4	3.654	2.885	2.604	2.529	2.501
0	2.914	2.561	2.467	2.440	2.430
10	2.375	2.405	2.551	2.340	2.547
12	2.190	2.141	2.129	2.129	2.132
14	2.025	2.003	2.001	2.006	2.008
16	1.864	1.863	1.867	1.867	1.863
18	1.715	1.713	1.718	1.720	1.723
20	1.561	1.559	1.568	1.574	1.570
22	1.394	1.400	1.406	1.414	1.407
24	1.225	1.238	1.244	1.251	1.250
20	0.891	0.904	0.915	0.920	0.922
30	0.727	0.736	0.746	0.756	0.753
32	0.559	0.567	0.578	0.578	0.573
34	0.395	0.394	0.407	0.411	0.408
36	0.230	0.221	0.232	0.233	0.235
38	0.064	0.044	0.050	0.057	0.055
40	-0.100	-0.136	-0.132	-0.126	-0.126
42	-0.270	-0.518	-0.514	-0.512	-0.512
46	-0.614	-0.694	-0.709	-0.704	-0.706
48	-0.784	-0.898	-0.914	-0.913	-0.896
50	-0.953	-1.101	-1.148	-1.144	-1.127
52	-1.122	-1.306	-1.362	-1.367	-1.363
54	-1.289	-1.522	-1.618	-1.605	-1.611
56	-1.459	-1.741	-1.858	-1.872	-1.874
58 60	-1.620	-1.965	-2.111	-2.131	-2.160
62	-1.783	-2.107	-2.598	-2.448	-2.450
64	-2.104	-2.635	-2.963	-3.103	-3.122
66	-2.266	-2.842	-3.225	-3.457	-3.474
68	-2.427	-2.984	-3.451	-3.682	-3.746
70	-2.581	-3.088	-3.612	-3.782	-3.888
72	-2.729	-3.215	-3.703	-3.857	-3.881
74 76	-2.8/1	-3.361	-3.386	-3./19	-3.725
78	-3.014	-3.330	-3.042	-3.439	-3.230
80	-3.299	-3.979	-4.306	-4.398	-4.431
82	-3.444	-4.104	-4.436	-4.490	-4.506
84	-3.563	-4.234	-4.499	-4.557	-4.572
86	-3.672	-4.366	-4.557	-4.598	-4.616
88	-3.787	-4.452	-4.612	-4.617	-4.596
90	-3.912	-4.525	-4.652	-4.667	-4.685
92 94	-4.008	-4.602	-4.080	-4.723	-4.752
96	-4.166	-4.693	-4.783	-4.793	-4.790
98	-4.244	-4.726	-4.797	-4.814	-4.801
100	-4.305	-4.745	-4.821	-4.834	-4.847
102	-4.346	-4.783	-4.849	-4.862	-4.874
104	-4.356	-4.811	-4.865	-4.882	-4.888
108	-4.339	-4.829	-4.886	-4.090	-4.902
110	-4.298	-4.849	-4.908	-4.902	-4.932
112	-4.151	-4.848	-4.926	-4.934	-4.949
114	-3.975	-4.851	-4.928	-4.936	-4.943
116	-3.699	-4.814	-4.927	-4.948	-4.955
118	-3.336	-4.732	-4.934	-4.961	-4.964
120	-2.913	-4.293	-4.910	-4.900	-4.907
122	-2.494	-5.184	-4.707	-4.939	-4.930
126	-1.832	-1.144	-1.839	-1.489	-1.508
128	-1.657	-1.862	-1.890	-1.881	-1.878
130	-1.644	-2.145	-2.094	-2.125	-2.123
132	-1.803	-2.221	-2.304	-2.334	-2.327
134	-2.104	-2.377	-2.501	-2.512	-2.516
130	-2.515	-2.495	-2.0/9	-2.122	-2./30
140	-2.261	-2.645	-2.052	-3.106	-3.152
142	-2.242	-2.705	-3.048	-3.220	-3.285
144	-2.232	-2.757	-3.076	-3.209	-3.304

Table 3. Natural logarithm	s of averaged phase functions
of light scattering	by quartz particles in seawater.

146	-2.238	-2.761	-2.995	-3.160	-3.258	
148	-2.263	-2.461	-2.865	-2.948	-2.989	
150	-2.294	-2.239	-2.695	-2.677	-2.642	
152	-2.346	-2.298	-1.871	-2.276	-2.277	
154	-2.404	-2.579	-2.579	-2.855	-3.579	
156	-2.467	-2.933	-3.510	-3.714	-3.736	
158	-2.537	-3.215	-3.669	-3.727	-3.739	
160	-2.611	-3.384	-3.693	-3.724	-3.750	
162	-2.686	-3.475	-3.698	-3.716	-3.697	
164	-2.718	-3.538	-3.707	-3.728	-3.753	
166	-2.751	-3.563	-3.703	-3.954	-3.767	
168	-2.771	-3.566	-3.700	-3.760	-3.766	
170	-2.742	-3.575	-3.702	-3.746	-3.768	
172	-2.656	-3.527	-3.694	-3.733	-3.794	
174	-2.534	-3.517	-3.698	-3.734	-3.761	
176	-2.198	-3.381	-3.644	-3.713	-3.757	
178	-1.702	-3.137	-3.590	-3.588	-3.716	
180	-0.710	-0.856	-0.330	0.313	0.830	

$$p_{q}(\theta) = N_{0}^{-1} \sum_{i=1}^{5} N_{i} \, \tilde{p}_{i}(\theta)$$
(3)

here $\tilde{p}_i(\theta)$ are averaged phase functions of scattering given in Tab. 3.

ACKNOWLEDGMENT

VIH thanks continuing support at the Naval Research Laboratory (NRL) through the Littoral Optical Environment (LOE 6640-09) program. This article represents NRL contribution NRL/PP/7331–00–0011

REFERENCES

- V. I. Haltrin, "Chlorophyll-based model of seawater optical properties," Appl. Optics, 38, 6826-6832 (1999).
- [2] V. I. Haltrin, E. B. Shybanov, R. H. Stavn, and A. D. Weidemann, "Light scattering coefficient by quartz particles suspended in seawater," in *Proceeding of the International Geoscience and Remote Sensing Symposium IGARSS'99*, Hamburg, Germany, ed. Tammy I. Stein, IEEE, Piscataway, NJ, USA, 1999, pp.1420-1422.
- [3] E. B. Shybanov, Program MBP.p to calculate Mie light scattering by a very huge spherical particle, MHI Optics Laboratory Technical Note, (Ukrainian National Academy of Sciences Marine Hydrophysical Institute, Sevastopol, Crimea, January 1999).
- [4] WETLabs Inc. *AC-9 Documentation and Manual*, June 1994, Philomath, Oregon, USA, 36 pp.
- [5] T. R. Keen, and S. M. Glenn, "A coupled hydrodinamic-bottom boundary layer model of Ekman flow on stratified continental shelves," *J. Phys. Oceanogr.*, 24, pp. 1732-1749 (1994).
- [6] H. C. van de Hulst, *Light Scattering by Small Particles*, (Dover, New York, 1981).