Light scattering phase functions of turbid coastal waters measured in LEO-15 experiment in 2000

Michael E. Lee,* Vladimir I. Haltrin,†

Eugeny B. Shybanov,* and Alan D. Weidemann †

* Marine Hydrophysical Institute, Ukrainian National Academy of Sciences, Optics Department, 2 Kapitanskaya Street, Sevastopol, Crimea, 99011, Ukraine, e-mail: ocean@alpha.mhi.iuf.net

[†] Naval Research Laboratory, Ocean Optics Section, Code 7333, Stennis Space Center, MS 39529-5004, USA e-mail: haltrin@nrlssc.navy.mil, web page: http://haltrin.freeshell.org

Abstract — In this paper we propose additional 60 new experimental phase functions of light scattering by natural seawater measured in very turbid waters of Atlantic during LEO-15 experiment off the New Jersey coast. Previously published experimental phase functions include 15 phase functions by Petzold measured in California Bay and 41 phase functions by Mankovsky measured in waters of Atlantic, Indian and Southern oceans, Mediterranean and Black seas, and lake Baikal. All previously published phase functions correspond to waters with beam scattering coefficients in the range of 0.08 to 1.8 1/m. The newly measured phase functions expand the range of scattering coefficients more than five times up to 9.3 1/m.

1. INTRODUCTION

Light scattering phase functions by seawater that are experimentally measured over thirty years by Petzold became very popular among scientists involving in radiative transfer modeling in the ocean. The original work of Petzold is published as a report [1] and gives numerical values of fifteen phase functions at 515 nm for 21 scattering angles between 0.338° -170° with the values of absorption, scattering and backscattering coefficients. Thirty years later since the release of Petzold report two publications [2, 3] have been released with the tables of 41 experimental seawater light scattering phase functions at 520 nm measured at 33 scattering angles between 2°-162.5° in waters of Atlantic, Indian and Southern oceans, Mediterranean and Black seas, and lake Baikal. In this paper we propose additional 60 new experimental phase functions measured during 2000 LEO-15 experiment off the New Jersey Atlantic coast in ocean waters with light scattering coefficient varying between 0.38 and 9.3 1/m.

For the remote optical sensing of oceans and inland water basins and estimation of visibility properties of seawater, and light propagation it is very important to know relationships between some inherent optical properties, like scattering and backscattering coefficients, average cosines and

probability of backscattering or ratio of backscattering to scattering coefficients, etc. A number of practically useful relationships between these properties based on 60 new phase functions are proposed.

2. MEASURING DEVICE

The maximum intensity of light source in the polar nephelometer was centered at 550 nm with ten nm spectral sensitivity half width. Measurements of light scattering phase functions have been made with the precision of 5% at 590 scattering angles between 0.6 and 177.3 degrees. A complete set of technical parameters of the polar nephelometer can be found in Refs. [4] and [5].

3. SCATTERING PHASE FUNCTIONS

Due to the space restrictions in this publication we give here the tables of measured phase functions (PhFs) only at 36 scattering angles, while all integral properties of these phase functions are computed using the full set of measurements at 590 scattering angles. The set of angles given in Tables 1-12 is carefully chosen to represent all measured phase functions in a maximum detail of accuracy, especially in the forward direction of scattering. The most important integral properties of these phase functions useful for purposes of light propagation and image transfer are computed and given in these tables. Below we give exact definitions of all these parameters.

Phase functions of light scattering $p(\theta)$ are normalized according to the following formula:

$$0.5 \int_0^{\pi} p(\theta) \sin \theta \, d\theta = 1. \tag{1}$$

Ratio of backscattering b_B to scattering b coefficients, b_B/b , or probability of backscattering B is defined as follows:

Table 1. Natural logarithms of PhFs $p(\theta)$ No. 01-05

Table 2. Natural logarithms of PhFs $p(\theta)$ No. 06-10

angle	phf01	phf02	phf03	phf04	phf05	angle	phf06	phf07	phf08	phf09	phf10
0.6	6.2377	6.3112	6.0822	6.1957	6.4288	0.6	6.6066	6.3934	6.6798	6.2300	6.4831
0.9	5.5308	5.5974	5.3500	5.4726	5.7519	0.9	5.9158	5.6819	5.7657	5.5692	5.8752
1.2	5.1278	5.2083	5.0552	4.9661	5.4065	1.2	5.3678	5.2904	5.1670	5.1271	5.3549
1.8	4.6235	4.6764	4.4105	4.3214	4.6351	1.8	4.8106	4.7125	4.5062	4.5768	4.7861
3.0	3.7486	3.8659	3.4757	3.3635	3.7716	3.0	3.9126	3.8859	3.6151	3.8261	4.0263
4.2	3.1614	3.2534	2.8770	2.7257	3.1131	4.2	3.2679	3.1444	3.0463	3.3035	3.3723
5.7	2.5904	2.6870	2.2300	2.1592	2.5052	5.7	2.6047	2.5481	2.4108	2.6841	2.7944
7.5	2.0562	2.0906	1.6290	1.5582	1.9296	7.5	2.0176	1.9632	1.8398	2.0670	2.1428
9.9	1.3723	1.4574	0.9843	0.9112	1.2480	9.9	1.3337	1.2885	1.1329	1.3624	1.4220
12.3	0.8772	0.9853	0.4639	0.3816	0.6562	12.3	0.7235	0.7014	0.6263	0.7338	0.8142
15.0	0.4651	0.6008	0.0356	0.0316	0.2234	15.0	0.3436	0.3422	0.2118	0.2272	0.3513
18.0	0.0875	0.2025	-0.3535	-0.4128	-0.1773	18.0	-0.0870	-0.0746	-0.1497	-0.2034	-0.1230
21.3	-0.2303	-0.1061	-0.6805	-0.7259	-0.5227	21.3	-0.4163	-0.4039	-0.4651	-0.6063	-0.5329
24.9	-0.5619	-0.4353	-1.0328	-1.0529	-0.8888	24.9	-0.7939	-0.7677	-0.8036	-0.9840	-0.9312
28.8	-0.8981	-0.7784	-1.4012	-1.3960	-1.2388	28.8	-1.1876	-1.1752	-1.1697	-1.3961	-1.3411
33.0	-1.2757	-1.1376	-1.7305	-1.7828	-1.6095	33.0	-1.5492	-1.4907	-1.4875	-1.7807	-1.7256
37.5	-1.6003	-1.4738	-2.0482	-2.0798	-1.9595	37.5	-1.8761	-1.8292	-1.8052	-2.1468	-2.1216
42.3	-1.9181	-1.7778	-2.3867	-2.3999	-2.2588	42.3	-2.2307	-2.1285	-2.1138	-2.5175	-2.5108
47.4	-2.2220	-2.1001	-2.6861	-2.7061	-2.5697	47.4	-2.5899	-2.4693	-2.4062	-2.8790	-2.8746
52.8	-2.5513	-2.4133	-2.9923	-3.0262	-2.9404	52.8	-2.8593	-2.7824	-2.6825	-3.2589	-3.2453
58.2	-2.8460	-2.7103	-3.2801	-3.3002	-3.2305	58.2	-3.1955	-3.0749	-2.9819	-3.5813	-3.5631
64.2	-3.1131	-3.0027	-3.5795	-3.5834	-3.5345	64.2	-3.5110	-3.3396	-3.3088	-3.9151	-3.8831
70.5	-3.3964	-3.2929	-3.8788	-3.8689	-3.8177	70.5	-3.7919	-3.6298	-3.5483	-4.1822	-4.1525
76.8	-3.6105	-3.5116	-4.0952	-4.1038	-4.0687	76.8	-4.0152	-3.8715	-3.7348	-4.4517	-4.4104
83.7	-3.8200	-3.7350	-4.3370	-4.3249	-4.2598	83.7	-4.2363	-4.0558	-3.9328	-4.6750	-4.6407
90.0	-3.9674	-3.8915	-4.4913	-4.5045	-4.4394	90.0	-4.4021	-4.2077	-4.0664	-4.8546	-4.8157
98.1	-4.1424	-4.0596	-4.6640	-4.6633	-4.6374	98.1	-4.5840	-4.3965	-4.2483	-5.0365	-5.0068
105.6	-4.2690	-4.1840	-4.7676	-4.7877	-4.7387	105.6	-4.72.67	-4.5186	-4.3542	-5.1516	-5.1288
113.7	-4.3312	-4.2553	-4.8344	-4.8475	-4.8585	113.7	-4.7590	-4.6038	-4.4325	-5.2576	-5.1680
121.8	-4.3957	-4.2991	-4.8965	-4.9028	-4.9137	121.8	-4.8257	-4.6567	-4.4947	-5.3105	-5.2462
130.5	-4.4417	-4.3313	-4.9449	-4.9419	-4.9298	130.5	-4.8557	-4.6705	-4.5108	-5.3381	-5.2900
139.2	-4.4325	-4.3267	-4.9495	-4.9466	-4.9275	139.2	-4.8856	-4.6775	-4.5223	-5.3381	-5.2831
148.2	-4.4256	-4.3175	-4.9219	-4.9235	-4.9160	148.2	-4.8695	-4.6613	-4.4854	-5.3266	-5.2785
157.8	-4.3773	-4.2761	-4.8942	-4.8844	-4.8631	157.8	-4.8096	-4.6383	-4.4670	-5.2460	-5,1933
167.4	-4.2345	-4.1540	-4.7192	-4.7623	-4.6328	167.4	-4.5724	-4.4633	-4.3127	-4.9398	-4.8502
177 3	-4 0365	-3 9146	-4 5212	-4 4791	-4 1677	177 3	-4 0175	-3 9752	-3 7855	-4 2030	-3 9292
h 1/m	2 5580	2 3 3 9 1	3 5328	3 7970	2 4405	<u>h 1/m</u>	2 1881	2 3882	2 4580	2 8347	2 3648
bR 1/m	0.0348	0.0343	0.0289	0.0309	0.0203	bR 1/m	0.0190	0.0246	0.0288	0.0157	0.0140
bB/h	0.0240	0.0345	0.0205	0.0224	0.0203	bR/h	0.0150	0.0240	0.0200	0.0110	0.0140
<mue></mue>	0.0200	0.0250	0.0210	0.0224	0.9545	<mue></mue>	0.9571	0.0203	0.9455	0.9626	0.9660
<mub></mub>	0.7507	0.7572	0.775	0.794	0.7543	<mub></mub>	0.7718	0.9492	0.1555	0.7020	0.1882
<cos></cos>	0.9021	0.9011	0.9163	0.9141	0.9300	<inud></inud>	0.9342	0.9201	0.9110	0.9455	0.4002
<008/	0.9021	0.9011	0.9103	0.9141	0.9300	<005/	0.9342	0.9201	0.9119	0.9455	0.9499
<thet></thet>	0.0009	0.2747	0.2301	0.2406	0.2120	<thet></thet>	0.2032	0.2313	0.0903	0.1890	0.1768
<thet?< td=""><td>0.2500</td><td>0.2506</td><td>0.2391</td><td>0.2188</td><td>0.1764</td><td><thet2></thet2></td><td>0.2052</td><td>0.2016</td><td>0.2712</td><td>0.13/5</td><td>0.1245</td></thet?<>	0.2500	0.2506	0.2391	0.2188	0.1764	<thet2></thet2>	0.2052	0.2016	0.2712	0.13/5	0.1245
~met2/	0.2300	0.2300	0.212/	0.2100	0.1/04	~met2>	0.1050	0.2010	0.2232	0.1345	0.1245

$$b_B / b \equiv B = 0.5 \int_{\pi/2}^{\pi} p(\theta) \sin \theta \, d\theta \,. \tag{2}$$

The shape of the seawater phase function is well described by the following seven integral parameters: probability of backscattering B given by the Eq. (2), average cosine in the forward direction, <muF>:

$$\langle \cos \rangle_F = \int_0^{\pi/2} p(\theta) \cos \theta \sin \theta \, d\theta \Big/ \int_0^{\pi/2} p(\theta) \sin \theta \, d\theta \,, \quad (3)$$

average cosine in the backward direction, <muB>:

$$<\cos>_{B}=-\int_{\pi/2}^{\pi}p(\theta)\cos\theta\sin\theta\,d\theta\Big/\int_{\pi/2}^{\pi}p(\theta)\sin\theta\,d\theta$$
, (4)

total average cosine, <cos>:

$$<\cos\theta>=0.5\int_{0}^{\pi}p(\theta)\cos\theta\sin\theta\,d\theta\,,$$
 (5)

total square of average cosine, <cos2>:

$$<\cos^2\theta>=0.5\int_0^{\pi}p(\theta)\cos^2\theta\sin\theta\,d\theta$$
, (6)

average scattering angle, <thet>:

$$<\theta>=0.5\int_{0}^{\pi}p(\theta)\theta\sin\theta\,d\theta\,,$$
 (7)

and average square of scattering angle, <thet2>:

$$<\theta^2>=0.5\int_0^{\pi} p(\theta)\theta^2\sin\theta\,d\theta$$
. (8)

The last four parameters are used to compute a modu-

Table 3. Natural logarithms of PhFs $p(\theta)$ No. 11-15

Table 4. Natural logarithms of PhFs $p(\theta)$ No. 16-20

angle	phf11	phf12	phf13	phf14	phf15	angle	phf16	phf17	phf18	phf190	phf20
0.6	6.5818	6.6330	6.4881	6.4280	6.6860	0.6	6.6548	6.4987	6.2549	6.2367	6.3454
0.9	5.9394	5.9376	5.8641	5.7326	5.9538	0.9	5.9617	5.8309	5.6815	5.6587	5.7306
1.2	5.4397	5.3320	5.4565	5.2099	5.5255	1.2	5.4897	5.4441	5.4098	5.3571	5.4151
1.8	4.8641	4.8393	4.8164	4.6412	5.0212	1.8	4.9555	5.0043	5.1220	4.9426	4.9523
3.0	4.0881	3.9988	4.0704	3.8583	4.2383	3.0	4.2716	4.3089	4.3921	4.3716	4.1810
4.2	3.4641	3.5107	3.4187	3.2665	3.7179	4.2	3.6660	3.7356	3.7842	3.7361	3.4879
5.7	2.8286	2.7923	2.8891	2.6540	3.1124	5.7	3.0489	3.0885	3.1648	3.0637	2.7902
7.5	2.2276	2.1453	2.3089	2.0001	2.4953	7.5	2.5907	2.4853	2.5408	2.4305	2.1892
9.9	1.5161	1.4292	1.5882	1.2218	1.8644	9.9	1.8240	1.6909	1.7464	1.7973	1.3511
12.3	0.9313	0.9779	1.0263	0.6185	1.1621	12.3	1.2391	1.0876	1.2352	1.0927	0.7363
15.0	0.5444	0.5288	0.5750	0.1005	0.8098	15.0	0.8131	0.6685	0.7770	0.6529	0.3287
18.0	-0.0266	-0.1113	0.1099	-0.3624	0.3700	18.0	0.3020	0.1942	0.3418	0.1694	-0.1663
21.3	-0.4779	-0.5534	-0.2999	-0.7515	-0.0007	21.3	-0.1286	-0.1466	-0.0680	-0.2336	-0.5808
24.9	-0.9039	-0.9494	-0.6891	-1.1544	-0.3714	24.9	-0.4717	-0.5380	-0.4802	-0.6412	-0.9837
28.8	-1.3713	-1.4076	-1.1312	-1.5850	-0.8251	28.8	-0.9069	-1.0147	-0.9407	-1.0994	-1.4189
33.0	-1.7651	-1.8290	-1.5180	-1.9511	-1.2119	33.0	-1.3306	-1.4314	-1.2976	-1.4632	-1.8035
37.5	-2.1772	-2.2665	-1.9164	-2.3541	-1.5826	37.5	-1.7589	-1.8298	-1.7029	-1.8523	-2.1742
42.3	-2.5871	-2.6050	-2.3124	-2.7478	-1.9787	42.3	-2.1112	-2.1913	-2.0344	-2.2875	-2.5403
47.4	-2.9555	-2.9895	-2.6877	-3.1278	-2.3586	47.4	-2.5118	-2.5597	-2.5203	-2.6398	-2.9571
52.8	-3.3446	-3.3533	-3.0492	-3.4939	-2.7224	52.8	-2.9332	-2.9926	-2.8703	-2.9299	-3.2886
58.2	-3.6992	-3.7148	-3.3808	-3.8370	-3.0793	58.2	-3.2624	-3.3011	-3.1604	-3.3029	-3.6409
64.2	-4.0032	-4.0280	-3.7147	-4.1524	-3.4155	64.2	-3.5503	-3.6074	-3.4459	-3.6414	-3.9195
70.5	-4.2933	-4.3204	-3.9795	-4.4149	-3.6503	70.5	-3.8726	-3.9136	-3.7591	-3.9845	-4.2350
76.8	-4.5282	-4.5553	-4.2489	-4.6659	-3.8576	76.8	-4.0637	-4.1347	-4.0630	-4.2401	-4.4768
83.7	-4.7354	-4.7832	-4.4515	-4.8823	-4.0993	83.7	-4.3308	-4.3488	-4.2749	-4.4588	-4.7231
90.0	-4.9288	-4.9674	-4.6587	-5.0780	-4.2951	90.0	-4.5128	-4.5584	-4.4959	-4.6085	-4.9373
98.1	-5.0601	-5.1263	-4.8337	-5.2438	-4.5161	98.1	-4.6762	-4.6850	-4.6295	-4.8411	-5.1353
105.6	-5.0923	-5.0802	-4.9328	-5.3682	-4.6243	105.6	-4.7891	-4.8185	-4.7630	-4.9447	-5.2827
113.7	-5.1752	-5.2138	-5.0341	-5.4488	-4.7049	113.7	-4.8328	-4.8462	-4.8160	-5.0230	-5.3633
121.8	-5.1867	-5.2460	-5.0640	-5.5063	-4.7510	121.8	-4.9272	-4.8554	-4.8989	-5.0414	-5.3702
130.5	-5.3018	-5.3957	-5.1193	-5.5294	-4.7786	130.5	-4.9410	-4.9475	-4.9334	-5.0736	-5.4323
139.2	-5.3893	-5.4279	-5.1377	-5.5478	-4.7740	139.2	-4.9687	-4.9889	-4.9495	-5.0759	-5.4531
148.2	-5.3985	-5.4487	-5.1124	-5.5271	-4.7717	148.2	-4.9641	-4.9982	-4.9081	-5.0713	-5.3863
157.8	-5.3111	-5.3727	-5.0133	-5.4373	-4.7118	157.8	-4.8581	-4.8508	-4.7975	-4.9608	-5.2873
167.4	-4.8782	-4.9720	-4.6081	-5.0320	-4.3457	167.4	-4.4690	-4.4294	-4.4360	-4.5809	-4.8935
177.3	-3.8052	-3.8783	-3.5328	-4.1271	-3.2520	177.3	-3.2509	-3.2827	-3.2341	-3.6529	-4.0070
<i>b</i> ,1/m	2.1734	2.2631	2.2297	2.7781	1.7422	<i>b</i> ,1/m	1.8224	1.9048	1.8562	2.0120	2.2978
<i>bB</i> ,1/m	0.0119	0.0116	0.0154	0.0127	0.0177	<i>bB</i> ,1/m	0.0143	0.0147	0.0162	0.0147	0.0108
bB/b	0.0095	0.0092	0.0117	0.0099	0.0137	bB/b	0.0111	0.0113	0.0123	0.0111	0.0085
<muf></muf>	0.9697	0.9698	0.9626	0.9688	0.9594	<muf></muf>	0.9630	0.9642	0.9615	0.9642	0.9690
<mub></mub>	0.4594	0.4402	0.4791	0.4833	0.4981	<mub></mub>	0.4679	0.4591	0.4984	0.4941	0.4463
<cos></cos>	0.9561	0.9568	0.9458	0.9544	0.9395	<cos></cos>	0.9471	0.9481	0.9436	0.9480	0.9570
<cos2></cos2>	0.9427	0.9430	0.9305	0.9417	0.9246	<cos2></cos2>	0.9310	0.9328	0.9284	0.9334	0.9425
<thet></thet>	0.1652	0.1630	0.1898	0.1659	0.2032	<thet></thet>	0.1890	0.1859	0.1979	0.1879	0.1623
<thet2></thet2>	0.1068	0.1042	0.1334	0.1127	0.1516	<thet2></thet2>	0.1291	0.1267	0.1403	0.1286	0.1033

lation transfer function used in underwater visibility calculations. The dependence of backscattering on scattering coefficient is shown in Fig. 1. Below we give a number of regressions that connect all integral parameters with each other and scattering coefficient:

$$B \equiv b_B / b = 0.00458 + 0.00334 b, \quad r^2 = 0.589, \quad (9)$$

$$<\cos\theta>=0.986-3.29b_B/b, r^2=0.991,$$
 (10)

$$<\cos^2\theta>=0.974-3.43b_B/b, r^2=0.976, (11)$$

$$<\cos^2\theta>=0.985<\cos\theta>, r^2=0.996,$$
 (12)

Fig. 1. Dependence of backscattering coefficient on scattering coefficient for three sets of data.

Table 5. Natural logarithms of PhFs $p(\theta)$ No. 21-25

Table 6. Natural logarithms of PhFs $p(\theta)$ No. 26-30

angle	phf21	phf22	phf23	phf24	phf25	angle	phf26	phf27	phf28	phf29	phf30
0.6	6.4808	6.3733	6.6997	6.6128	6.6323	0.6	6.4330	6.3828	6.3512	6.4573	6.4655
0.9	5.7923	5.8000	6.0457	5.9220	5.9070	0.9	5.7929	5.6805	5.6858	5.7366	5.7885
1.2	5.4653	5.3878	5.5254	5.5237	5.5086	1.2	5.3738	5.3259	5.2529	5.3083	5.3534
1.8	4.8666	4.8675	5.0464	4.8928	4.9813	1.8	4.9064	4.7641	4.7325	4.7741	4.7708
3.0	4.0055	3.9833	4.2981	4.0362	4.1087	3.0	4.0475	3.7947	3.8713	3.8093	3.8198
4.2	3.2502	3.3063	3.7063	3.3385	3.3580	4.2	3.3407	3.1407	3.1000	3.0356	3.0531
5.7	2.5548	2.5257	3.1076	2.7375	2.6949	5.7	2.6982	2.4016	2.3355	2.2596	2.2426
7.5	1.8457	1.7889	2.6471	2.0514	2.0594	7.5	2.0834	1.7177	1.7415	1.5366	1.5679
9.9	1.1088	1.0958	1.7606	1.3261	1.2926	9.9	1.2914	0.9510	0.8780	0.7376	0.7620
12.3	0.4227	0.4235	1.2333	0.7942	0.7446	12.3	0.6996	0.3293	0.1803	0.1021	0.1058
15.0	-0.0632	-0.0854	0.7912	0.3889	0.3601	15.0	0.2667	-0.0760	-0.2019	-0.3169	-0.3156
18.0	-0.5191	-0.4930	0.3584	-0.1061	-0.1442	18.0	-0.2145	-0.5941	-0.6970	-0.8051	-0.7485
21.3	-0.8737	-0.9212	-0.0492	-0.5275	-0.5518	21.3	-0.5853	-1.0062	-1.0769	-1.2034	-1.1468
24.9	-1.2836	-1.3196	-0.3831	-0.9074	-0.9455	24.9	-0.9882	-1.4000	-1.4891	-1.6156	-1.5429
28.8	-1.7164	-1.7295	-0.8597	-1.3495	-1.4198	28.8	-1.4395	-1.8259	-1.9266	-2.0278	-1.9712
33.0	-2.1401	-2.0817	-1.2558	-1.7387	-1.7975	33.0	-1.8402	-2.2450	-2.3364	-2.4077	-2.3442
37.5	-2.4809	-2.4939	-1.6541	-2.1554	-2.1797	37.5	-2.2454	-2.6365	-2.7164	-2.8037	-2.7241
42.3	-2.8033	-2.8923	-2.0064	-2.5400	-2.6011	42.3	-2.62.76	-2.9565	-3.0571	-3.1537	-3.0833
47.4	-3.1763	-3.2192	-2.4370	-2.9199	-2.9695	47.4	-3.0191	-3.3733	-3.4440	-3.5014	-3.4540
52.8	-3.5608	-3.5485	-2.7985	-3.2883	-3.3103	52.8	-3.3368	-3.7348	-3.8078	-3.8537	-3.8063
58.2	-3.8763	-3.9031	-3,1738	-3.6015	-3.6418	58.2	-3,7007	-4.0549	-4.1255	-4.1991	-4.1402
64.2	-4.2.746	-4.1978	-3.4962	-3.9538	-3.9918	64.2	-4.0437	-4.4048	-4.4801	-4.5537	-4.4603
70.5	-4.4980	-4.4880	-3.7472	-4.2.577	-4.2290	70.5	-4.3753	-4.72.72	-4.7657	-4.8369	-4.7619
76.8	-4 7858	-4 8472	-3 9429	-4 4903	-4 5076	76.8	-4 5964	-5 0219	-5 0397	-5.0511	-5 0198
83 7	-4 9976	-5.0360	-4 1962	-4 7343	-4 7770	83.7	-4 8566	-5 2430	-5 3137	-5 3297	-5 2731
90.0	-5 2095	-5 2455	-4 3896	-4 9162	-4 9958	90.0	-5 0454	-5 4709	-5 5278	-5 5162	-5 4688
98.1	-5 3730	-5 4228	-4 5415	-5.0866	-5 1477	98.1	-5 2135	-5 6782	-5 7327	-5 7142	-5 6507
105.6	-5 5295	-5 5333	-4 6935	-5 1995	-5 2237	105.6	-5 3332	-5 8071	-5 8225	-5 8339	-5 7773
113 7	-5 6193	-5 5863	-4 5830	-5 3399	-5 2905	113 7	-5 4207	-5 8808	-5 9123	-5 9583	-5 9270
121.8	-5 6769	-5 6646	-4 7603	-5 3146	-5 3158	121.8	-5 4667	-5 9061	-6 0229	-5 9905	-5 9362
130.5	-5 6493	-5 7290	-4 7465	-5 3652	-5 4171	130.5	-5.4857	-5 9476	-5.9768	-6.0158	-5 9546
139.2	-5 6976	-5 7221	-4 7948	-5 3975	-5 4425	139.2	-5.5013	-5 9176	-6.0252	-6.0274	-5 9777
148.2	-5 6723	-5 6830	-4 7948	-5 3583	-5 4379	148.2	-5 4690	-5 9061	-5 9929	-5 9974	-5 9385
157.8	-5 5917	-5.6093	-4 7119	-5 2777	-5 3158	157.8	-5.3792	-5 8071	-5.9077	-5.8915	-5 8787
167.4	-5 2187	-5 2939	-4 3136	-4 8241	-4 8898	167.4	-4 9855	-5 4249	-5 5324	-5 5807	-5 5471
177.3	-4 5717	-4 6422	-2 9413	-3.7143	-3 7777	177.3	-4.0460	-4 6121	-4 9084	-4 9889	-4 9783
h 1/m	2 6000	2 6465	1 7336	2 2687	2 2867	h 1/m	2 4601	3 0087	3 1137	3 08/18	3 0168
$b_{R} 1/m$	2.0099	2.0403	1.7550	2.2087	2.2807	$b_{\rm P} 1/m$	2.4001	3.0087	0.0088	3.0848	0.0087
<i>UD</i> ,1/111 <i>LD/L</i>	0.0093	0.0098	0.0131	0.0118	0.0112	<i>UD</i> ,1/111 <i>hD/h</i>	0.0113	0.0089	0.0088	0.0080	0.0087
0D/0	0.0076	0.0080	0.0117	0.0090	0.0090	UD/U	0.0091	0.0072	0.0072	0.0075	0.0073
<mup></mup>	0.9720	0.9724	0.9013	0.9079	0.9090	<iiiur></iiiur>	0.9090	0.9734	0.9740	0.9755	0.9740
	0.4309	0.4083	0.4409	0.4/12	0.4303		0.4792	0.4/48	0.4/90	0.4/03	0.4033
<cos></cos>	0.9620	0.9008	0.9451	0.9341	0.9501	<cos></cos>	0.9339	0.9029	0.9033	0.9050	0.9044
<cos2></cos2>	0.9491	0.9488	0.9279	0.9402	0.9422	< <u>cos</u> 2>	0.9423	0.930/	0.9519	0.9343	0.9555
<tnet></tnet>	0.1455	0.14//	0.1935	0.10/1	0.1619	<tnet></tnet>	0.1040	0.1442	0.1411	0.133/	0.1356
<thet2></thet2>	0.0908	0.0955	0.1325	0.1121	0.1061	<thet2></thet2>	0.1078	0.0897	0.0889	0.0855	0.0866

$$<\cos\theta>_{F} = 0.986 - 1.896 b_{B}/b, r^{2} = 0.974.$$
 (13)

The average cosine over backward hemisphere has no significant dependence on *B* and can be estimated as:

$$<\cos\theta>_{B} = 0.476 \pm 0.016.$$
 (14)

Average scattering angles correlate nicely with b_B/b and with each other as well as average cosine:

$$<\theta>=0.107+6.332b_B/b, r^2=0.976,$$
 (15)

$$<\theta^2>=0.029+8.640b_B/b, r^2=0.997,$$
 (16)

$$<\theta^2>=2.614-2.622<\cos\theta>, r^2=0.9998, (17)$$

$$<\cos\theta>=0.997-0.381<\theta^2>, r^2=0.9998.$$
 (18)

The regressional relationships (9)-(18), proposed above, represent coastal waters with the scattering coefficient varying between 0.38 and 9.3 1/m, with the maximum value of scattering coefficient b more than five times larger than the maximum value of bmeasured by Petzold [1]. These relationships may be used for modeling of light propagation and visibility in murky coastal waters.

The average of all 60 phase functions given in Tables 1-12 with its standard deviation is shown in Figure 2.

Table 7. Natural logarithms of PhFs $p(\theta)$ No. 31-35

Table 8. Natural logarithms of PhFs $p(\theta)$ No. 36-40

angle	phf31	phf32	phf33	phf34	phf35	angle	phf36	phf37	phf38	phf39	phf40
0.6	6.3338	6.4777	6.5594	6.8406	5.9818	0.6	6.1323	5.9719	6.4741	6.7934	6.0449
0.9	5.6661	5.7155	5.7465	6.0416	5.3785	0.9	5.4852	5.3618	5.7856	5.9829	5.3703
1.2	5.2700	5.2320	5.2837	5.6041	5.0584	1.2	5.0662	5.0026	5.3597	5.4602	4.9305
1.8	4.7312	4.6379	4.6689	4.9755	4.6163	1.8	4.6195	4.5743	4.7702	4.8800	4.3479
3.0	3.8632	3.8182	3.8446	3.9232	3.7713	3.0	3.8044	3.7707	3.9413	4.0902	3.4637
4.2	3.1793	3.2218	3.2528	3.2370	3.0966	4.2	3.1343	3.0338	3.2620	3.4040	2.8236
5.7	2.4425	2.6485	2.6450	2.5140	2.4266	5.7	2.4619	2.3385	2.5252	2.7363	2.2134
7.5	1.7885	2.0590	2.0923	1.9015	1.7381	7.5	1.7965	1.6408	1.8920	2.1307	1.5963
9.9	1.0425	1.3706	1.4384	1.1993	0.8977	9.9	0.9123	0.8464	1.1874	1.4445	0.9562
12.3	0.4737	0.8364	0.8996	0.6374	0.1908	12.3	0.1778	0.1671	0.5864	0.8827	0.4819
15.0	0.0754	0.4173	0.5358	0.2391	-0.3204	15.0	-0.2896	-0.3187	0.2249	0.4544	0.1089
18.0	-0.4358	-0.0432	0.0292	-0.2122	-0.7901	18.0	-0.7525	-0.8299	-0.3300	0.0399	-0.2872
21.3	-0.8548	-0.4278	-0.3622	-0.6152	-1.2530	21.3	-1.2406	-1.2973	-0.7514	-0.3446	-0.6073
24.9	-1.2601	-0.8192	-0.7813	-0.9905	-1.7135	24.9	-1.7103	-1.7371	-1.1451	-0.6969	-0.9388
28.8	-1.7183	-1.2636	-1.2257	-1.3773	-2.1625	28.8	-2.1478	-2.1884	-1.5734	-1.0860	-1.3211
33.0	-2.1121	-1.6504	-1.6033	-1.7250	-2.5516	33.0	-2.5784	-2.6006	-1.9372	-1.4452	-1.6572
37.5	-2.5150	-2.0281	-1.9855	-2.0934	-2.9523	37.5	-3.0090	-3.0127	-2.3102	-1.7975	-1.9980
42.3	-2.9041	-2.4172	-2.3655	-2.4342	-3.3460	42.3	-3.4096	-3.4157	-2.6671	-2.1360	-2.3020
47.4	-3.2726	-2.7764	-2.7270	-2.7566	-3.7098	47.4	-3.8149	-3.8071	-3.0402	-2.4653	-2.6174
52.8	-3.6318	-3.1402	-3.0931	-3.1020	-4.0990	52.8	-4.2063	-4.1825	-3.3763	-2.8130	-2.9260
58.2	-3.9679	-3.4603	-3.4362	-3.4312	-4.4397	58.2	-4.5748	-4.5347	-3.7171	-3.1238	-3.2230
64.2	-4.2880	-3.7918	-3.7194	-3.7467	-4.7966	64.2	-4.9501	-4.8824	-4.0418	-3.4162	-3.5292
70.5	-4.6058	-4.1004	-4.0394	-4.0161	-5.1006	70.5	-5.2494	-5.1703	-4.3135	-3.7156	-3.7963
76.8	-4.8683	-4.3583	-4.2881	-4.2395	-5.3838	76.8	-5.5188	-5.4351	-4.5530	-3.9435	-4.0519
83.7	-5.1031	-4.6185	-4.5391	-4.4697	-5.6279	83.7	-5.7721	-5.6676	-4.7786	-4.1715	-4.2937
90.0	-5.2873	-4.8004	-4.7371	-4.6263	-5.8328	90.0	-5.9747	-5.8749	-4.9651	-4.3580	-4.4802
98.1	-5.4876	-5.0076	-4.9213	-4.8220	-6.0377	98.1	-6.1727	-6.0729	-5.1447	-4.5468	-4.6483
105.6	-5.6005	-5.1435	-5.0848	-4.9371	-6.1851	105.6	-6.3132	-6.2064	-5.2529	-4.6688	-4.7749
113.7	-5.6880	-5.2194	-5.1424	-5.0200	-6.2680	113.7	-6.4283	-6.3216	-5.3658	-4.7609	-4.8532
121.8	-5.7294	-5.2747	-5.2253	-5.0799	-6.3348	121.8	-6.4813	-6.3722	-5.4210	-4.7955	-4.9085
130.5	-5.7478	-5.3046	-5.2529	-5.0914	-6.3463	130.5	-6.4744	-6.3814	-5.4602	-4.8346	-4.9108
139.2	-5.7594	-5.3069	-5.2253	-5.1006	-6.3486	139.2	-6.4652	-6.3929	-5.4533	-4.8208	-4.8993
148.2	-5.7271	-5.2747	-5.2138	-5.0408	-6.2956	148.2	-6.4352	-6.3354	-5.4072	-4.8116	-4.8785
157.8	-5.6419	-5.1826	-5.1240	-4.9993	-6.1828	157.8	-6.2994	-6.2248	-5.3335	-4.7356	-4.8187
167.4	-5.2436	-4.8695	-4.8384	-4.7161	-5.7062	167.4	-5.7560	-5.7459	-4.9997	-4.4662	-4.6667
177.3	-4.5090	-4.3353	-4.2444	-4.2441	-5.4644	177.3	-5.3853	-5.2923	-4.5345	-4.0011	-4.1026
<i>b</i> ,1/m	2.9318	2.6125	2.4951	2.1016	3.5378	<i>b</i> ,1/m	3.3968	3.7196	2.4638	1.9339	3.7723
<i>bB</i> ,1/m	0.0105	0.0150	0.0150	0.0144	0.0071	<i>bB</i> ,1/m	0.0060	0.0072	0.0127	0.0175	0.0311
bB/b	0.0084	0.0115	0.0115	0.0126	0.0057	bB/b	0.0049	0.0058	0.0109	0.0148	0.0220
<muf></muf>	0.9711	0.9611	0.9607	0.9649	0.9770	<muf></muf>	0.9789	0.9771	0.9678	0.9583	0.9432
<mub></mub>	0.4761	0.4795	0.4675	0.4684	0.4728	<mub></mub>	0.4788	0.4734	0.4968	0.4741	0.4792
<cos></cos>	0.9589	0.9445	0.9443	0.9468	0.9687	<cos></cos>	0.9718	0.9687	0.9517	0.9371	0.9119
<cos2></cos2>	0.9461	0.9281	0.9274	0.9346	0.9572	<cos2></cos2>	0.9606	0.9573	0.9400	0.9228	0.8956
<thet></thet>	0.1552	0.1921	0.1930	0.1723	0.1354	<thet></thet>	0.1290	0.1352	0.1679	0.1980	0.2505
<thet2></thet2>	0.1002	0.1361	0.1359	0.1325	0.0751	<thet2></thet2>	0.0672	0.0753	0.1209	0.1571	0.2227
					-		•	-			

Fig. 2. Average phase function of scattering plusminus standard deviation at LEO-15 (2000).

4. CONCLUSIONS

Presented here sixty new experimental light scattering phase functions represent an addition to the Petzold [1, 6] and Mankovsky [2. 3, 6] phase functions for the case of turbid coastal ocean waters of Atlantic. They expand the range of variability of measured phase functions from 1.8 1/m (Petzold plus Mankovsky) to 9.3 1/m (LEO-15 in 2000).

These phase functions with the associated optical properties may be used for modeling of light propagation and image transfer in turbid coastal waters as well as for developing algorithms of processing remote optical information.

Table 9. Natural logarithms of PhFs $p(\theta)$ No. 41-45

Table 10. Natural logarithms of PhFs $p(\theta)$ No. 46-50

angle	phf41	phf42	phf43	phf44	phf45	angle	phf46	phf47	phf48	phf49	phf50
0.6	5.7006	6.1473	6.3077	6.1279	5.9608	0.6	5.9666	6.0180	5.2191	6.2927	6.3269
0.9	5.0398	5.4588	5.5617	5.4625	5.3414	0.9	5.3196	5.3042	4.6204	5.6250	5.6545
1.2	4.6299	4.9868	5.1564	5.0572	4.7243	1.2	4.7416	4.8022	4.2820	5.2266	5.2240
1.8	4.0727	4.4687	4.4956	4.4102	4.1417	1.8	4.1176	4.2036	3.7316	4.7477	4.7312
3.0	3.2415	3.4878	3.5815	3.3579	3.0987	3.0	3.1367	3.1720	2.9419	4.1398	4.1256
4.2	2.6382	2.8039	2.8815	2.6510	2.4240	4.2	2.3055	2.4858	2.3317	3.5250	3.6190
5.7	2.0211	2.1454	2.3058	2.0823	1.7539	5.7	1.7598	1.8595	1.7652	2.9379	2.9582
7.5	1.4293	1.5582	1.7164	1.4790	1.1898	7.5	1.2394	1.2770	1.2103	2.3231	2.3572
9.9	0.8007	0.9526	1.1108	0.8573	0.5981	9.9	0.5970	0.6852	0.6278	1.5655	1.5790
12.3	0.3448	0.4645	0.6180	0.3968	0.1652	12.3	0.1364	0.2270	0.1949	0.9047	0.9342
15.0	-0.0098	0.2020	0.3417	0.0008	-0.2032	15.0	-0.2343	-0.1184	-0.1137	0.5570	0.5382
18.0	-0.4081	-0.2769	-0.1418	-0.3907	-0.5786	18.0	-0.6004	-0.4983	-0.4683	-0.0417	-0.0144
21.3	-0.7075	-0.6154	-0.4803	-0.6946	-0.8595	21.3	-0.8767	-0.7908	-0.7492	-0.5391	-0.4911
24.9	-1.0367	-0.9562	-0.8303	-1.0285	-1.1726	24.9	-1.2152	-1.1062	-1.0831	-0.9719	-0.9332
28.8	-1.3936	-1.3730	-1.2424	-1.3900	-1.5295	28.8	-1.5283	-1.4562	-1.4261	-1.4302	-1.3845
33.0	-1.7275	-1.7161	-1.5855	-1.7331	-1.8266	33.0	-1.8599	-1.7717	-1.7485	-1.8285	-1.7782
37.5	-2.0407	-2.0499	-1.9263	-2.0785	-2.1167	37.5	-2.1523	-2.0572	-2.0571	-2.2268	-2.1673
42.3	-2.3561	-2.3700	-2.2671	-2.3962	-2.3884	42.3	-2.4079	-2.3450	-2.3518	-2.6091	-2.5496
47.4	-2.6554	-2.6993	-2.5987	-2.6817	-2.6739	47.4	-2.6911	-2.6121	-2.6511	-2.9913	-2.9341
52.8	-2.9433	-3.0170	-2.9095	-3.0018	-2.9410	52.8	-2.9721	-2.8861	-2.9389	-3.3920	-3.3025
58.2	-3.2219	-3.3025	-3.2066	-3.2643	-3.1621	58.2	-3.2115	-3.1256	-3.1968	-3.7258	-3.6341
64.2	-3.5120	-3.6249	-3.5335	-3.5890	-3.4384	64.2	-3.4671	-3.4065	-3.5031	-4.0965	-3.9864
70.5	-3.7975	-3.8966	-3.8190	-3.8837	-3.6917	70.5	-3.7319	-3.6529	-3.7610	-4.3844	-4.2811
76.8	-4.0531	-4.1614	-4.0654	-4.1531	-3.9426	76.8	-3.9714	-3.8831	-4.0235	-4.6837	-4.5275
83.7	-4.2880	-4.4147	-4.3233	-4.4409	-4.1591	83.7	-4.1970	-4.1249	-4.2606	-4.9163	-4.7992
90.0	-4.4699	-4.6035	-4.5006	-4.5906	-4.3364	90.0	-4.3674	-4.2999	-4.4563	-5.1534	-5.0110
98.1	-4.6495	-4.7739	-4.6825	-4.7748	-4.5206	98.1	-4.5493	-4.4818	-4.6290	-5.3192	-5.2137
105.6	-4.7807	-4.9120	-4.7976	-4.9083	-4.6611	105.6	-4.6944	-4.6176	-4.7603	-5.4712	-5.3403
113.7	-4.8636	-4.9834	-4.8759	-4.9981	-4.7532	113.7	-4.7865	-4.6936	-4.8478	-5.5541	-5.4117
121.8	-4.9120	-5.0318	-4.9427	-5.0442	-4.8038	121.8	-4.8164	-4.7489	-4.9077	-5.5955	-5.4808
130.5	-4.9281	-5.0456	-4.9611	-5.0718	-4.8245	130.5	-4.8579	-4.7811	-4.9261	-5.5978	-5.4900
139.2	-4.9166	-5.0249	-4.9496	-5.0580	-4.8337	139.2	-4.8648	-4.7834	-4.9284	-5.6024	-5.4623
148.2	-4.8959	-4.9949	-4.9105	-5.0281	-4.7969	148.2	-4.8348	-4.7604	-4.9030	-5.5587	-5.4232
157.8	-4.8659	-4.9420	-4.8483	-5.0005	-4.7716	157.8	-4.8233	-4.7328	-4.8892	-5.4251	-5.3104
167.4	-4.7715	-4.7324	-4.6365	-4.8324	-4.6864	167.4	-4.7312	-4.6338	-4.9560	-4.8909	-4.7416
177.3	-4.2811	-4.1269	-4.0332	-4.2107	-4.2097	177.3	-4.1464	-4.1318	-4.8593	-3.9492	-3.7331
b,1/m	5.3669	3.2965	2.8587	3.6220	4.6682	b,1/m	4.6497	4.3863	9.2629	2.3216	2.2576
bB,1/m	0.0441	0.0237	0.0230	0.0274	0.0427	bB,1/m	0.0410	0.0417	0.0767	0.0099	0.0104
bB/b	0.0265	0.0190	0.0186	0.0213	0.0307	bB/b	0.0301	0.0303	0.0328	0.0077	0.0082
<muf></muf>	0.9340	0.9477	0.9487	0.9449	0.9311	<muf></muf>	0.9320	0.9311	0.9188	0.9699	0.9686
<mub></mub>	0.4803	0.4759	0.4818	0.5073	0.4730	<mub></mub>	0.4682	0.4694	0.4764	0.4926	0.4681
<cos></cos>	0.8966	0.9207	0.9220	0.9140	0.8879	<cos></cos>	0.8898	0.8886	0.8731	0.9586	0.9568
<cos2></cos2>	0.8794	0.9040	0.9056	0.8994	0.8740	<cos2></cos2>	0.8755	0.8740	0.8529	0.9442	0.9418
<thet></thet>	0.2820	0.2334	0.2315	0.2435	0.2864	<thet></thet>	0.2829	0.2865	0.3320	0.1663	0.1697
<thet2></thet2>	0.2630	0.1987	0.1960	0.2204	0.2881	<thet2></thet2>	0.2823	0.2852	0.3230	0.1003	0.1038

In addition to the tables of 60 phase functions the practically useful relationships (9)-(18) between these properties based on these new phase functions are proposed.

5. ACKNOWLEDGMENT

The authors from the Naval Research Laboratory (NRL) thank continuing support through the Volume Scattering Functions VSF 73-6641-02-5 program. This article represents NRL contribution PP-7330-03-0005.

6. REFERENCES

- Petzold, T. J., Volume Scattering Functions for Selected Ocean Waters, SIO Ref. 72-78, Scripps Institute of Oceanography, Visibility Laboratory, San Diego, CA, 1972, 79 p.
- [2] V. I. Mankovsky and V. I. Haltrin, "Phase Functions of Light Scattering Measured in Waters of World Ocean and Lake Baykal," - 2002 IEEE International Geoscience and Remote Sensing Symposium and the 24th Canadian Symposium on Remote Sensing Proceedings on CD ROM, June 24-28, 2002, Toronto, Canada, Library of Congress Number: 2002 105858, Paper # I2E09_1759.

Table 11. Natural logarithms of PhFs $p(\theta)$ No. 51-55

Table 12. Natural logarithms of PhFs $p(\theta)$ No. 56-60

angle	phf51	phf52	phf53	phf54	phf55	angle	phf56	phf57	phf58	phf59	phf60
0.6	6.5352	6.2628	6.3216	6.0977	6.1801	0.6	6.1245	7.6418	8.3703	8.4558	7.8869
0.9	5.8721	5.5812	5.6424	5.4139	5.5422	0.9	5.4475	6.8474	7.5413	7.5416	7.0856
1.2	5.4553	5.1138	5.2279	4.9925	5.0978	1.2	5.0492	6.3800	7.0808	7.0051	6.6458
1.8	4.9833	4.6487	4.7443	4.5182	4.6696	1.8	4.6808	5.7537	6.3946	6.3627	6.0840
3.0	4.4030	3.8981	4.0490	3.7998	3.9074	3.0	4.0015	4.9294	5.5657	5.4325	5.2873
4.2	3.9011	3.3477	3.5700	3.2517	3.4031	4.2	3.4673	4.3998	4.9970	4.7670	4.6610
5.7	3.3508	2.7445	2.9161	2.5955	2.8344	5.7	2.8594	3.8034	4.3891	4.1315	4.0646
7.5	2.7705	2.1826	2.3566	1.9991	2.1643	7.5	2.1963	3.0988	3.6914	3.4246	3.3554
9.9	1.9922	1.5126	1.5990	1.3268	1.4828	9.9	1.4249	2.2423	2.9200	2.6509	2.5357
12.3	1.3890	0.8563	0.9128	0.7350	0.8081	12.3	0.7779	1.6183	2.3467	2.0477	1.8771
15.0	0.9998	0.4511	0.5053	0.3597	0.4029	15.0	0.2437	1.1531	1.8562	1.5457	1.4811
18.0	0.5025	-0.0969	-0.0519	-0.1722	-0.1567	18.0	-0.2675	0.6535	1.3635	1.0806	0.9791
21.3	0.0673	-0.5183	-0.4848	-0.5751	-0.5895	21.3	-0.7326	0.2022	0.9974	0.7122	0.5670
24.9	-0.3242	-0.9466	-0.9499	-0.9758	-1.0063	24.9	-1.1309	-0.2169	0.6658	0.3484	0.1318
28.8	-0.7501	-1.3933	-1.4059	-1.4133	-1.4047	28.8	-1.5915	-0.6659	0.2467	-0.0684	-0.3310
33.0	-1.1692	-1.7525	-1.8019	-1.7771	-1.8514	33.0	-1.9783	-1.0573	-0.1816	-0.4645	-0.7685
37.5	-1.5676	-2.1416	-2.1611	-2.1202	-2.2198	37.5	-2.3651	-1.4672	-0.5661	-0.8329	-1.1623
42.3	-1.9521	-2.4847	-2.5387	-2.4679	-2.5836	42.3	-2.7451	-1.8932	-0.9598	-1.2519	-1.5929
47.4	-2.3274	-2.8324	-2.9210	-2.8017	-2.9474	47.4	-3.1526	-2.2869	-1.3605	-1.6664	-2.0234
52.8	-2.7073	-3.1916	-3.2917	-3.1471	-3.3066	52.8	-3.5256	-2.7267	-1.6990	-1.9703	-2.4080
58.2	-3.0504	-3.5117	-3.6163	-3.4488	-3.5990	58.2	-3.8687	-3.0537	-1.9845	-2.2927	-2.7626
64.2	-3.3590	-3.8248	-3.9226	-3.7619	-3.9490	64.2	-4.1842	-3.3047	-2.3253	-2.6128	-3.1425
70.5	-3.6445	-4.1311	-4.2058	-4.0544	-4.2230	70.5	-4.5273	-3.6984	-2.6177	-2.9259	-3.4464
76.8	-3.8863	-4.3820	-4.5282	-4.3099	-4.5062	76.8	-4.7713	-3.9701	-2.8479	-3.1769	-3.7573
83.7	-4.1073	-4.6307	-4.7630	-4.5586	-4.7572	83.7	-5.0476	-4.1796	-3.0874	-3.4394	-4.0060
90.0	-4.3030	-4.8587	-4.9979	-4.7728	-4.9575	90.0	-5.2618	-4.3731	-3.2693	-3.5775	-4.1487
98.1	-4.5172	-5.0544	-5.1591	-4.9478	-5.1671	98.1	-5.4368	-4.5250	-3.3914	-3.7226	-4.3767
105.6	-4.6668	-5.1787	-5.3249	-5.0928	-5.3283	105.6	-5.5934	-4.6309	-3.4996	-3.7986	-4.4550
113.7	-4.7635	-5.2893	-5.3341	-5.1642	-5.4066	113.7	-5.6670	-4.6425	-3.5157	-3.8815	-4.5425
121.8	-4.8142	-5.3169	-5.4607	-5.2264	-5.4457	121.8	-5.7269	-4.7369	-3.5848	-3.8861	-4.5839
130.5	-4.8441	-5.3422	-5.4515	-5.2471	-5.4733	130.5	-5.7476	-4.7230	-3.5502	-3.8654	-4.5517
139.2	-4.7981	-5.3284	-5.4423	-5.2563	-5.4802	139.2	-5.7476	-4.7622	-3.5640	-3.8470	-4.5079
148.2	-4.7843	-5.3123	-5.4054	-5.2287	-5.4135	148.2	-5.6716	-4.7207	-3.5088	-3.7986	-4.4366
157.8	-4.6576	-5.1972	-5.2903	-5.1412	-5.3144	157.8	-5.5381	-4.6263	-3.4167	-3.6835	-4.2892
167.4	-4.3145	-4.7389	-4.7561	-4.7705	-4.8309	167.4	-4.9648	-4.0875	-2.9285	-3.2874	-3.6330
177.3	-3.6353	-3.7696	-3.7568	-3.9300	-3.8661	177.3	-3.9102	-2.9593	-1.4203	-1.9266	-2.2445
<i>b</i> ,1/m	1.6314	2.5851	2.2565	2.9872	2.6492	<i>b</i> ,1/m	2.7387	0.7823	0.3796	0.4341	0.5807
<i>bB</i> ,1/m	0.0152	0.0143	0.0112	0.0176	0.0130	<i>bB</i> ,1/m	0.0100	0.0075	0.0118	0.0096	0.0072
bB/b	0.0115	0.0111	0.0090	0.0132	0.0101	bB/b	0.0076	0.0070	0.0115	0.0093	0.0068
<muf></muf>	0.9608	0.9630	0.9680	0.9581	0.9654	<muf></muf>	0.9703	0.9750	0.9687	0.9731	0.9751
<mub></mub>	0.4809	0.4805	0.4925	0.4663	0.4861	<mub></mub>	0.4742	0.4791	0.5002	0.4898	0.5235
<cos></cos>	0.9442	0.9470	0.9549	0.9392	0.9507	<cos></cos>	0.9594	0.9648	0.9518	0.9594	0.9650
<cos2></cos2>	0.9274	0.9316	0.9407	0.9227	0.9360	<cos2></cos2>	0.9450	0.9530	0.9409	0.9493	0.9535
<thet></thet>	0.1999	0.1881	0.1726	0.2034	0.1808	<thet></thet>	0.1638	0.1434	0.1668	0.1455	0.1440
<thet2></thet2>	0.1367	0.1303	0.1103	0.1494	0.1208	<thet2></thet2>	0.0978	0.0854	0.1212	0.1010	0.0860

- [3] V. I. Mankovsky and V. I. Haltrin, "Light scattering phase functions measured in waters of Mediterranean Sea," in OCEANS 2002 MTS-IEEE Proceedings, vol.4, IEEE Catalog Number: 02CH37362C, ISBN: 0-7803-7535-1, pp. 2368-2373, (MTS-IEEE, Biloxi, Mississippi, USA, October 29-31, 2002). This paper contains complete tables of presented phase functions.
- [4] V. I. Haltrin, M. E. Lee, and O. V. Martynov, "Polar Nephelometer for Sea Truth Measurements", pp. 444-450, in *Proceedings of* the Second International Airborne Remote Sensing Conference and Exhibition, Vol. II, San Francisco, CA, (Publ. by ERIM, ISSN 1076-7924, 1996).
- [5] M. E. Lee and M. Lewis, "A new method for the measurement of the optical volume scattering function in the upper ocean," J. Atmos. Ocean. Technol., 20, 563–571, (2003)
- [6] V. I. Haltrin, "Theoretical and empirical phase functions for Monte Carlo calculations of light scattering in seawater," in *Proceedings of the Fourth International Conference Remote Sensing for Marine and Coastal Environments*, I, pp. 509-518, (Envir. Res. Inst. of Michigan, Ann Arbor, MI, USA, 1997).
- Re: All papers with V. I. Haltrin as a co-author are available online at http://haltrin.freeshell.org>.