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Abstract -A new type of one-parameter seawater
light scattering phase function that satisfies
three most important properties of experi-
mental phase functions is proposed.

1. INTRODUCTION

Modeling of radiative transfer or visibility in sea
water often requires an analytical form of light
scattering phase function. Existing models of
scattering phase functions include Henyey-Greenstein
[1], seawater two-term Henyey-Greenstein [2], and
Fournier-Foran [3, 4] analytic forms of scattering
phase functions. These phase functions in general
could not replace experimental phase function due to
the lack of certain properties. A set of experimental
phase functions measured by Petzold [5] (Pacific
Ocean off the California coast), Mankovsky [6-8]
(Atlantic, Indian and Southern Oceans, Mediterranean
and Black Seas, Lake Baikal), and M. Lee [9, 10]
(LEO-15 2000, and 2001 measurements off the New
Jersey Atlantic coast) all satisfy the following
properties: (1) existence of two very narrow
scattering peaks - the largest one, in forward
direction, and the smallest one, in backward direction;
(2) strong correlation between backscattering
probability and the value of phase function near the
scattering angle about 140 degrees [11, 12]; (3) strong
correlation between average cosine over phase
function and probability of backscattering [2, 11, 13].
Neither one of the existing analytic forms of light
scattering phase functions satisfies all these three
important conditions.

2. ANALYTIC REPRESENTATION OF PHASE
FUNCTION

Let us represent a scattering phase function (PhF)
in the form of a linear combination of two
anisotropic phase functions, pF  with the peak
forward, and pB  with the peak backward:

p g f f p f p gHL F B( , , , ) ( , ) ( ) ( , )ε µ ε µ µ= + −1 , (1)

here µ θ= cos , θ  is a scattering angle, and f , ε  and g
are parameters. Both components of PhF (1) are
normalized according to:

p d p d p dF B HL( , ) ( , ) ( , )ε µ µ ε µ µ ε µ µ
− − −
∫ ∫ ∫= = =
1

1

1

1

1

1

2 . (2)

The backward scattering portion of the phase
function (1) may be adequately represented by a
Henyey-Greenstein function:
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here Pn ( )µ  are Legendre Polynomials. The average
cosine of PhF (3) is given by

cosθ B g= − , (4)

and backscattering probability by the formula:
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If we represent the forward scattering part of the
phase function (1) by a Henyey-Greenstein term like
in [2], we could not satisfy (as numerical tests show)
all three conditions outlined before. The required
forward scattering term should be more anisotropic in
forward direction. The Henyey-Greenstein Legendre
polynomial coefficient gn  decline exponentially with
n : g n gn = −exp( ln( / ))1 . In order to insure higher
anisotropy we choose a slower diminishing coefficient
in the form of a hyperbolic dependence: ( )1 3+ −ε n .
This form of a coefficient was chosen from the
following considerations: a) it should be equal to 1 at
n = 0  (this ensures proper normalization of proposed
phase function), and b) the series should converge,
c) the angular behavior of this component at small
angles should be consistent with the behavior of
experimental phase functions [5-10]. This gives us
the following form of the forward part of the phase
function:
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here ε  is a positive parameter. The average cosine
and backscattering probability of PhF (6) are given,
respectively, by the following equations:

cos ( )θ εB = + −1 3 , (7)
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Consequently, the final expressions for the average
cosine and probability of backscattering of the phase
function (1) has the following form:

cos ( , , ) cos ( ) ( ) cos ( )θ ε θ ε θg f f f gF B= + −1 , (9)

B g f f B f B gF B( , , ) ( ) ( ) ( )ε ε= + −1 . (10)

Now we are ready to reduce a number of free
parameters in Eq. (1).

3. ELIMINATION OF TWO EXTRA PARAMETERS

Analysis of experimentally measured phase
functions show that there are two very significant
empirical relationships that are satisfied for all phase
functions: 1) correlation between backscattering
probability and value of the PhF at 140°:

B g f p g fVH( , , ) ( , , , )ε η ε µ= 140 , (11)
where

η = 7 233. ,   µ140 140= ° =cos( ) -0.766044 , (11a)

and correlation between average cosine and back-
scattering probability [8, 13]:
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The first condition (11) immediately gives us an
equation to express parameter f  through the
parameters ε  and g :
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where

Ψ( ) ( ) ( , )g B g p gB B= −η µ140 , (14)
and

Φ( ) ( , ) ( )ε η ε µ ε= −p BF F140 . (15)

The remaining two parameters ε  and g  can be linked
using relationship (12):
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It should be noted, that not every choice of
forward and backward scattering components would
simultaneously satisfy both restrictions (11) and (12).

4. ONE-PARAMETER PHASE FUNCTION

The numerical solution of Eqs. (16), (13)-(15)
and (10) gives us relationships between parameters ε
and g  and backscattering probability B , or ratio of
backscattering to scattering coefficients, B b bB= / .
These connections may be expressed through the
following regressional relationships [14]:

ε( ) ( )B B= Ω , (17)

g B B( ) ( )= ∆ . (18)

The final version of one-parameter realistic
seawater phase function of light scattering has the
following form,
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with the functions Ψ  and Φ  expressed through (14)
and (15) and ε  and g  are given by (17) and (18).

Expression (19) gives us a realistic representation
of seawater light scattering phase function with the
following properties: 1) it has two anisotropic
scattering peaks, the largest one, forward, and the
smallest one, backward; 2) it satisfy important
relationship (11) between probability of back-
scattering and value of phase function at 140°; and
3) it satisfy relationship (12) between average cosine
and probability of scattering. Equation (19) also gives
us indirect spectral dependence on a wavelength of
light through the following empirical formula,
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derived from experimental data measured by M. E.
Lee in waters of Mobil Bay in 2003.

4. CONCLUSIONS

A new type of one-parameter seawater light
scattering phase function in the form of Legendre
polynomial series (19) is proposed. This phase
function satisfies three most important properties of
all experimental phase functions and fairly well
represents all database of existing experimental phase
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functions. A single parameter that determines the
shape of this new analytic seawater phase function is
a probability of backscattering or ratio of
backscattering to scattering coefficients.
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