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Abstract – A new approach is proposed for the calculation of
irradiances, diffuse attenuation coefficients and diffuse
reflectances in waters with arbitrary scattering and absorption
coefficients, arbitrary conditions of illumination and a bottom
with Lambertian albedo. The two-stream approach adopted
here utilizes experimental dependencies of mean cosines from
inherent optical properties in order to achieve appropriate
accuracy. This approach can be successfully used for
calculation of apparent optical properties in both open and
coastal oceanic waters, lakes and rivers.

INTRODUCTION

For many practical applications of remote sensing such as
the inference of the diffuse attenuation coefficient and
component inversion it is sufficient to know only the integral
characteristics of the light field such as upward and downward
irradiances or reflectances. Present models used in remote
sensing applications for radiative transfer employ simple two-
flow or quasi-single scattering approximations which suffer
from limited validity over the dynamic range of optical
properties found in the ocean. However the limitation to open
ocean water types restricts the general usage of these models.
Remote sensing applications would be greatly enhanced if we
add to it a simple model that can be used over all water types,
turbid to open ocean. We present a semi-empirical model that
incorporates laboratory and in situ measurements of optical
properties [1, 2] to encompass the entire range of natural
waters.

We start from an exact equation for irradiances derived from
the scalar transfer equation. To make this equation solvable it
is necessary, however, to approximate the resulting
coefficients of the system of two-flow equations. Due to the
inaccuracy inherent in the approximations, previous
approaches [3] have resulted in insufficient accuracy over
some portions of the natural range of optical parameters. We
use two main steps to reduce the exact, but analytically
unsolvable, system of equations to an approximate system
which can be easily solved. The first step consists of
replacing the initial arbitrary phase function with the
transport phase function. This greatly simplifies the
equations, but introduces excessive error. We reclaim the lost
accuracy, in the next step, by introducing empirical

relationships between the upward and downward cosines and
total mean cosine derived from laboratory and in situ data [1].

In the case of coastal waters it will be more consistent to
take into account variability of upward, downward and total
mean cosines ( µu , µd , µ ) or their functional dependence on
inherent optical properties. The experimental (modeled and
measured in-situ) data of Timofeyeva [1, 2] show that with

the change of x B B= − +( )ω ω ω0 0 01  between 0 and 1 (here

ω 0  is the single-scattering albedo and B is the probability of
backscattering) the total mean cosine µ  also varies between 0
and 1, the upward mean cosine µu  decreases from 1 to ~0.25
at x ~ .0 08 and then increases to 0.5 at x = 1, and the
downward mean cosine µd  decreases from 1 to 0.5.

The main purpose of this work is to obtain equations
which relate inherent optical to apparent optical properties for
any input radiance distribution. These equations, which are
convenient and precise, are valid in the complete range of
variability of optical properties of natural water.

In transfer theory, requirements of both simplicity and
precision are mutually exclusive. For a successful resolution
of the problem, therefore, we have accepted a compromise by
determining the degree of simplicity and precision.

In solving our problem we will use the self-consistent
method proposed in [4]. For a better understanding of the idea
of this method, we quote an example from classical
mechanics [5], from which it was adopted. Suppose we have
to obtain the equation of motion of a material body around
some center of attraction. The law of attraction is unknown to
us, or it is known only partially, but in addition we have
some information on the shape of trajectories in the form of
dependencies between integral parameters of these trajectories.
This problem can be solved provided we use the available
information to constrain the acceptable solutions. In this
example the knowledge of additional information on
consequences  (trajectory parameters) has made it possible to
compensate for the lack of information on causes  (attraction
forces).

In the theory of radiative transfer the main causes  are the
inherent optical properties such as the scattering law
characteristics (volume scattering and single scattering
albedo), and the main consequences  are the apparent optical
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properties, such as the angular distribution of radiance, as a
functions of depth. In general, the volume scattering function
is only approximately known, with unknown precision. It is
impossible in general to calculate the volume scattering
function of an actual medium because in many cases the
shape of the scattering particles is irregular and often exotic,
with the optical characteristics of these particles known only
approximately. Experimental measurements of the volume
scattering function  in the small-angles regime becomes
complicated due to difficulty in discriminating between
unscattered and forward scattered light. The measurements of
the volume scattering function in the range of angles close to
the backward direction are in principal impossible because one
cannot install a receiver before or behind an emitter without
considerable distortion in the process of measurement. To
overcome this, beam splitting of backscattered light has been
utilized with some success. On the contrary because, as a
rule, the angular distribution of the scattered light at depth is
always less anisotropic than the volume scattering function,
and the anisotropy of the direct light of the outer sources is
known, the measurements of radiance distribution are less
difficult, and the precision of these measurements is restricted
only by the perfection of the measuring device.

Thus, in our attempts to solve the problem of light field
calculation in a scattering and absorbing medium, we restrict
ourselves to the simplest transport approximation of the
volume scattering function. The information, which we lose
through this simplification, is restored by accepting
functional dependencies between integral parameters of the
radiance angular distribution, which are derived from an
approximation of experimental data.

FORMULATION OF THE PROBLEM

We shall start from the scalar equation describing the
transport of optical radiation in a layer of a scattering and
absorbing medium of thickness H

cos ( , , ) ( , ' , ' ) ( ) ' ,θ ∂
∂

θ ϕ
π

θ ϕ γ
z

c L z
b

L z p dt t+






= ∫4
Ω (1)

where L zt ( , , )θ ϕ  is the spectral density of the energetic
radiance (or, simply, radiance) of light, θ  and ϕ  are the
zenith and azimuth angles in the direction of light
propagation, measured from the positive direction of the 0z-
axis, c a b= +  is the extinction (attenuation) coefficient, a
is the absorption coefficient, b  is the scattering coefficient,
d d dΩ ≡ sinθ θ ϕ  is the element of solid angle, p( )γ  is the
volume scattering function. Here γ  is the light scattering
angle, which is determined from the relation:

cosγ µ µ= ′ + ( ) ( )1 12 2− − ′µ µ cos( )ϕ ϕ− ′ ,  w h e r e

µ θ= cos , ′ = ′µ θcos , and the phase function is normalized

as follows: p d( )γ π′ =∫ Ω 4 . The system of coordinates here

is chosen so that the xy-plane coincides with the outer
boundary of the medium on which the radiation is incident,
while the 0z-axis is oriented into the medium.

In an anisotropic light-scattering media the phase
function p( )γ  has a distinct diffraction peak near γ = 0. The
light rays scattered in a small solid angle near the forward
direction ( )γ ≅ 0  form the halo part of the scattered light and
are, for many applications, indistinguishable from the
unscattered rays. This suggests that the halo part of the rays
should not be regarded as scattered rays, i.e. the forward
diffraction peak can be eliminated from the volume scattering
function [4].

We separate the main part of the halo rays by
representing the volume scattering function as a sum of
isotropic and anisotropic components:

p B B p

p p B B p d
h

h h

( ) ( ) ( ),

( ) ( ) ,   ( ) ,

γ γ
γ γ γ π

= + −
= −[ ] −( ) ′ =∫

2 1 2

2 1 2 4Ω (2)

where B p d= ∫0 5
2

. ( )sin
/

γ γ γ
π

π
 is the probability of scatte-

ring into the backward hemisphere. When the elongation of
the phase function is increased, the relation
lim ( ) ( cos ) ( ) ( )

B hp
→

= − ≡ − ′ − ′
0

2 1 4γ δ γ π δ ϕ ϕ δ µ µ  exists,

where δ ( )x  is the Dirac delta-function. As B → 0  the phase
function p( )γ  equals the transport phase function

p B B p dt t( ) ( ) ( cos ),  ( )γ δ γ γ π= + − − ′ =∫2 2 1 2 1 4Ω . (3)

Substituting p p B pt h( ) ( ) ( )[ ( ) ( cos )]γ γ γ δ γ≡ + − − −1 2 2 1
into (1), we get
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where α = + = +1 x x b a bb b,  /( )  ≡ − +B Bω ω ω0 0 01/( ),
b bBb =  is the backscattering coefficient; ω 0 = +b a b/( ) is
the single scattering albedo, and τ = +z a bb( )  is the
transport  optical depth.

Let Lq ( , )µ ϕ  be the radiance of external sources at

τ = + = +0 0( )z  (below water surface) and L( , , )τ µ ϕ  be the
radiance of the scattered component minus the halo rays at the
optical depth τ . In this case the total radiance distribution
L L zt t( , , ) ( , , )τ µ ϕ µ ϕ≡  can be expressed as

L L Lt q( , , ) ( , , ) ( , ) ( ) exp( / )τ µ ϕ τ µ ϕ µ ϕ θ µ α τ µ= + − , (5)

where θ µ( )  is the Heavyside (or step) function defined by:
θ µ µ θ µ µ( ) , ; ( ) ,= > = ≤1 0 0 0. In this case α  is the
attenuation coefficient for the sum of forward and halo rays.
In (5) we assume that either the layer of scattering medium is
optically thick α ( ) ( )a b H a b Hb b+ ≡ + >>{ }2 1 , or that its

lower boundary reflects light according to Lambert’s law.
Substituting (5) into (4), we obtain an equation for the
radiance of the scattered light (without halo)

µ ∂
∂τ

α τ µ ϕ τ τ µ ϕ τ µ ϕ
π

+





= + +
L

x E g
( , , )

( ) ( , , ) ( , , )0

2

∆
,(6)

where E0 ( )τ  is the scalar irradiance by diffuse light,

E d L d0 0

2

1

1
( ) ( , , )τ ϕ τ µ ϕ µ

π
= ∫ ∫− , (7)
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g( , , )τ µ ϕ  is the source function

g
x
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d p L e d
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q
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( ) ( , ) ,

τ µ ϕ ϕ γ µ ϕ µ
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Equation (6) is totally equivalent to (1). Introduction of the
function ∆( , , )τ µ ϕ  in (6) corresponds to including the halo
rays in the nonscattered light. The expression (9) completely
vanishes in two limiting cases: (a) for isotropic scattering:
p( )γ = 1 at B = 0 5. , and (b) for extremely anisotropic

scattering: p( ) ( cos )γ δ γ= −2 1  at B = 0.

ENHANCED TWO-FLOW APPROXIMATION

Equation (6) for arbitrary p( )γ  cannot be solved
analytically. But if we neglect the term ∆  compared to
x E g0 + , we reduce the problem to the case of an exactly
solvable transport approximation. However in doing so we
decrease the accuracy of our results.

In order to overcome this shortcoming we propose to solve
(6) in the terms of self-consistent approximation [4]. This
consists of neglecting the value ∆  in comparison with
x E g0 + , and but then taking it into account later by
evaluating the quantity x E g0 +  through the two-flow
approximation. This technique requires empirical dependencies
between the integral parameters of radiance distribution,
which have been derived from experimental data.

We introduce downward ( )Ed  and upward ( )Eu  irradiances
by diffuse light (without halo)

E d L dd ( ) ( , , )τ ϕ τ µ ϕ µ µ
π

= ∫ ∫0

2

0

1
, (10)

E d L du ( ) ( , , )τ ϕ τ µ ϕ µ µ
π

= −∫ ∫−0

2

1

0
, (11)

and scalar irradiances by diffuse light (without halo)

E d L dd0 0

2

1

0
( ) ( , , )τ ϕ τ µ ϕ µ

π
= ∫ ∫− , (12)

E d L du0 0

2

1

0
( ) ( , , )τ ϕ τ µ ϕ µ

π
= ∫ ∫− . (13)

Average downward and upward cosines of the diffuse light
distribution (without halo) would be

µ τ τ τ µ τ τ τd d d u u uE E E E( ) ( ) ( ), ( ) ( ) ( )= =0 0 . (14)
We introduce average cosine for the diffuse light distribution

µ τ ϕ τ µ ϕ µ µ ϕ τ µ ϕ µ
π π
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d L d d L d
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1

1

0

2

1

1
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Applying the operators d dϕ µ
π

0

2

0

1

∫ ∫ …, d dϕ µ
π

0

2

1

0

∫ ∫ …
−

 on (6)

with ∆ = 0, using (10)-(14) and replacing the average cosines
µ τi i( ) ( , )= 1 2  (indices 1 and 2 are equivalent, respectively, to
the indices d and u) by their values deep in the layer, we
obtain from (6)

D E f i kik k i( ) ( ) ( ), , ,τ τ τ= = 1 2, (16)

where
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Here and further in this paper repeated indices imply
summation.

We shall look for solution of (16) in the form of a sum of
the general and particular solutions

E A a P p

G f d i k

i i i

ik k
H

( ) exp exp

( ) ( ) ,   , , ,

τ ε τ ε τ

τ τ τ τ
τ

= ( )+ ( )
+ − ′ ′ ′ =∫

1 2

0
1 2

(21)

where ε1 and ε2  are eigenvalues of equation (16), and Gik  is
the Green’s matrix of this equation, which satisfies the
equation  D Gil lk ik( ) ( )τ δ δ τ= .

Before writing down the solutions of (21) let us find
eigenvalues ε1  and ε2 . Inserting (21) into (16) we obtain

ε ε µ µ µ µ2 21 1 1 0− −( ) − −( ) ( ) =u d u dx , (22)

Before solving the quadratic equation (22), let us determine
the functional dependencies of the average cosines µu , µd  on

optical parameters of the medium. In the majority of two-
stream theories [3, 7] the quantities µu   and µd  are considered
as independent of the optical properties of the medium and
such an assumption leads to significant reduction of accuracy
in those approaches.

In this work we shall adopt the following two suppositions
of the self-consistent approach:

(a) We shall assume that neglecting ∆  in (18)-(19) does
not have any influence on the magnitude of the negative
eigenvalue of the system of equations (16), i.e. we assume
that it is equal to its exact value εe

− = ≡ −ε ε µ1 1e x( ) . (23)
(b) We will suppose that values µu  and µd  are functions of

the mean cosine µ  and adopt the functional dependencies
µ µu ( ) and µ µd ( )  which results from experiment.

After accepting these assumptions we can express the
parameter x  on µ  by installing (23) into (22)

 

x u d u d= + − +[ ][ ( )][ ( ) ] ( ) ( )µ µ µ µ µ µ µ µ µ µ µ 2 , (24)

By inserting into (24) experimental values of µ , µu  and µd

[1, 2], we obtain the corresponding values of x  (see Table1).
Table 1 makes it possible to obtain empirical dependencies
which connect mean cosines, diffuse reflectance R∞  and
coefficient k R x x= ∞ ( ) /  to the medium parameter

x b a bb b= +/( ) ≡ − +( )B Bω ω ω0 0 01 .

By imposing the condition of realization of asymptotic
behavior of R∞  at small x  and ( )1− x  given in [8]:



Remote Sensing for a Sustainable Future, Proceedings of 1996 International Geoscience and Remote Sensing
Symposium: IGARSS’96, Vol. 1, Lincoln, Nebraska, USA, 27-31 May 1996, IEEE Cat. # 96CH35875, ISSN # 95-80706.

308

Table 1.

µ µd µu R∞
x R x∞

0 0.5 0.5 1.0 1.0 1.0
0.1 0.5249 0.4831 0.671 0.9408 0.7132
0.2 0.5525 0.4545 0.443 0.7970 0.5550
0.3 0.5834 0.4202 0.283 0.6179 0.4580
0.4 0.6184 0.3745 0.171 0.4439 0.3852
0.5 0.6566 0.3311 0.095 0.2959 0.3211
0.6 0.7008 0.3003 0.048 0.1802 0.2664
0.7 0.7536 0.2857 0.0207 0.0967 0.2141
0.8 0.8217 0.3610 0.0082 0.0413 0.1985
0.9 0.9033 0.6849 0.0016 0.0101 0.1584
1.0 1.0 1.0 0.0 0.0 0.25

Experiment [1, 2] Eqn. (24)

R x
x x

x x∞ =
<< − <<

− − − << <<




( )
/ , ( ),

( ) / , ( ) ,

4 1 1 1

1 4 1 6 1 1 1

or 

or 

µ
µ

(25)

we can obtain from the data of Table 1 the following
equations
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= + − −( ) + + − −
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∑1

4
1 1 10 1

3 23 2

2

6

( ) .(30)

The values of coefficients a b cn n n, ,  and dn  are given in
Table 2. The correlation coefficients between the quantities of
parameters given in Table 1 and those computed by (26)-(30)
in all cases exceed 0.99, and mean quadratic deviations are less
then 3%.

The functional dependencies of the experimental values of
µ µ µ, , ,u d R∞  and values computed with (26)-(30) are shown
on Fig.1.

With inclusion of empirical equations (26)-(28), (22) and
(23) will give us the following dependencies for the
eigenvalues ε1 and ε2 :

Table 2.

n an bn cn dn rn
0 0.5918 0.0326 -0.0131 1.6330 0.7500
1 -0.7937 0.1661 8.4423 -0.8830 0.3750
2 4.8350 0.7785 -15.6605 0.4631 25.3315
3 -22.8150 0.0228 21.8820 2.3442 -83.6066
4 42.6859 -11.2257 -6.0841 24.7228
5 -35.8945 7.5933 130.6733
6 11.3905 -3.8215 -105.6769

− ≡ = −∞ε α µ1 1( )x , (31)
ε α µ µ µ2 0 1 1 1≡ = − + −u d x( ) , (32)

It is easy to show that the Green’s matrix Gik ( )τ  of (16) has
the following form: (33)

G
R

R R R
e

R R

R R R

R
e

R Rik ( )
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,τ θ τ θ τα τ α τ

=




 −
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∞

∞

∞ ∞

∞1

1 1 1
0

0 0

0 0

0

0

and a p a R p R1 2 2 1 01= = = =∞, , , (34)
where R E E

x x

u d d u

u d d u d u

∞ →∞

∞ ∞

= ≡ −( ) +( )
= − ( ) = +[ ]

lim ( ) ( ) / /

( ) ( ) ,
τ

τ τ µ µ µ µ

µ α µ µ µ µ α µ

1 1

1 1
(35)

is the diffuse reflectance of an infinitely thick layer at τ >> 1,
R E E

R x x

u d d u

d u d u

0 0 0

1 1

= ≡ −( ) +( )
= = −( ) = +( )

→∞
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lim ( ) ( )

,
τ

τ τ µ µ µ µ

µ µ α µ α µ
(36)

Substituting (33) and (34) into (21) and imposing boundary
conditions at τ = 0  and τ H bH a b≡ +( ) :

E E E A E Ed u H B d H d
f

H( ) , ( ) [ ( ) ( )]0 0= = +τ τ τ (37)

where AB  is the albedo of the lower boundary and Ed
f ( )τ  is

the total flux of the unscattered and halo rays

E d L dd
f

q( ) ( , ) expτ ϕ µ ϕ ατ µ µ µ
π

= −( )∫ ∫0

2

0

1
, (38)

we obtain the equations for the descending and ascending

Fig.1 Dependencies of the integral light field parameters
µ µ µ, ,d u , and R∞  on the parameter x . The filled
symbols denote experimental values, while others
correspond to computed ones.
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fluxes of diffuse radiation (without halo)

E E M e R N e ed ( ) [ ( )] ( )τ τ τα τ α τ α τ= + + −( )− −∞ ∞
0 0

0 , (39)
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For totally diffuse illumination of the medium we assume
that the light flux from external sources passing through the
upper boundary

E E d L dq d
f

q
0

0

1

0

2

0= ≡ ∫∫( ) ( , )ϕ µ ϕ µ µ
π

(44)

is completely diffuse and we take it into account by the
boundary condition E Eu q

0 00( ) = , while we set fi ( )τ  equal to

zero. In addition, making the substitutions E Eq0
0= ,

M( )τ = 0 , N A R E R eB q H
H( ) ( ) ( )τ ∆ ντ= − ∞

− −0
0

1  in (35), we
obtain  
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Now we calculate the transmittance of the layer ( , )0 τ H  for
diffuse light T E Ed d( ) ( ) / ( )τ τ= 0  and the diffuse reflectance
R E Eu d( ) ( ) / ( )τ τ τ= . Using (44)-(46), we obtain

T
R A A R e

R A A R e
B B

B B

H

H
( )

( ) ( )

( ) ( )
exp

( )

( )τ α τ
ν τ τ

ν τ τ= − + −
− + −

−( )
−

∞
− −

−
∞

− − ∞
0

1

0
1 , (47)

R R
R A A R R R e

R A A R e
B B

B B

H

H
( )

( ) ( ) ( )

( ) ( )

( )

( )τ
ν τ τ

ν τ τ= − + −
− + −∞

−
∞ ∞

− − −

−
∞

− −
0

1
0

1

0
1 . (48)

The functional dependencies of R R∞ ∞, , ,0 0α α  upon the
parameters of medium a and bb  are determined by (26)-(29),
(31), (32), and (36).

In the limiting case of optically thick layer
( [( ) ( )] , )H a b R Rb>> + + →∞

−
∞α α0

1  it is possible to ex-
press parameter x b a bb b= +/( )  in terms of the
experimentally measurable quantity R∞  Using the data of
Table 1 and the asymptotic conditions given by (25), we get
the following empirical equation

x R r r R

R r r Rn

n

n

= − − − −{

+ − + −








∞ ∞

∞ ∞

−

=
∑

1 1 1

1 1

2
1 0

2
1

3

4

2

6

( ) ( )

( ) .
(49)

The coefficients rn  are given in Table 2. The correlation
coefficient between the calculated via (49) values and
experimental data exceeds 0.99.

CONCLUSION

Our method of calculation is found to produce results with
accuracies in the range of 15% for all types of natural water
optical situations (open ocean to coastal environments).
Comparison with Monte-Carlo simulations shows that (49)
can be used for processing remotely sensed data collected over
coastal and open ocean areas with the same 15% precision.
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