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ABSTRACT

An analysis of the geometrical factors involved in the calculation of a
microwave pulse return in the remote sounding of Earth’s natural surfaces is given
and an algorithm for processing such data is proposed. In this approach the
microwave signal reflected from the surface is expressed as an integral which
includes all geometrical factors and the physical response of the underlying medium
to the pulse radiation. The problem of radar sounding of the Earth is reduced to the
calculation of the medium response to narrow pulse irradiation of its surface which
can be resolved using electromagnetic or radiative transport approaches. The
resulting radar equation expresses the intercepted signal as a function of the
sounding geometry, the radar pulse shape, the Earth surface roughness, and the
physical characteristics of the medium. These characteristics are represented by a
Green function or the response of this medium to illumination by a very narrow
pulse.

1.0 INTRODUCTION

The scientific and practical importance of microwave remote study of the Earth’s natural
covers has been discussed in detail in a number of papers (Foster, Hall, and Chang 1987; Brooks,
Campbell, Ramseier, Stanley and Zwally, 1978). The problem of interpretation and deciphering of
a microwave pulse signal reflected by snow-and-ice surfaces has not so far been resolved (Vickers,
1971; Zwally, Major, Brenner and Binschadler, 1971). This fact is not surprising since the
solution to the less difficult problem of the reflection of a narrow electromagnetic beam, falling
under arbitrary angle on the scattering surface and absorbing medium, has not yet been obtained in
its general form. A number of publications on this subject are available (Zege, Ivanov and Katsev,
1991). Most of them deal with optical beams. Unfortunately, the simplest solutions to the narrow
pulse reflection problem have an analytical form only in Fourier space and their functional
dependence on the space and time coordinates has a cumbersome integral form. The problem of
finding the microwave pulse return from the Earth surface is more difficult because a radar radiates
spherical waves whose angular dependence is determined by the radar gain.

At each particular moment in time a radar receiver records the signal reflected from the Earth
surface integrated over a ring-shaped footprint area. The diameter and, consequently, the total area
of the ring footprint varies with time. This effect leads to the distortion of the time envelope of the
received microwave signal.
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In this work we have expressed the microwave pulse signal reflected from the Earth’s surface
in the form of an integral. The integrand of this expression depends on geometrical factors and
the physical response of the underlying medium to the direct pulse irradiation. Therefore, the
problem of radar pulse sounding of the Earth’s cover is reduced to the problem of calculating the
response of a medium to narrow pulse irradiation of its surface.

2.0 DERIVATION OF THE MAIN EQUATION

Consider a radar installed on a satellite in an orbit situated at a distance H  from the Earth’s
surface. We set up a Cartesian coordinate system with the 0z-axis directed from the center of the

radar antenna to the Earth at a normal angle to its surface. We define n0 0
2

01 0= −( , , )µ µ  as a unit
vector oriented in the direction of maximum intensity of the signal radiated by the radar antenna,
µ θ θ0 0 0 1= <<cos ,  . For simplicity we consider an infinitely short impulse signal of the form

P t P G trad ( , ) ( ) ( )n nn= 0 0 δ , (1)

where n = − −( cos ,  sin ,  )1 12 2µ ϕ µ ϕ µ  is a unit vector in the direction of sounding,
µ θ= cos   with θ   as  zenith angle, ϕ  is the azimuth angle of sounding, δ ( )t  is the Dirac delta
function (Morse and Feshbach, 1953) and G( )nn0  is a gain which determines the angular
distribution of energy radiated by the radar. We assume the following Gaussian form for the gain:
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The normalization of the gain is performed under the condition
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π
. (3)

For satellite remote sounding radars the value D ≅ −10 4 , which corresponds to an effective gain

angle θ 2 ≅0.8°=0.014 rad.
In what follows, we break up the derivation of our main result, Eqn. (14), into successive

stages, each adopting a simplifying assumption. Should further improvement be necessary, each
stage can separately be addressed.

2.1 STAGE 1: PULSE SHAPE AS A FUNCTION OF DISTANCE

A radar pulse signal which propagates in the atmosphere interacts with the air molecules and
aerosol particles. As a result the pulse distorts in space and broadens in time. These
transformations are described by the macroscopical Maxwell’s equations (Skolnik, 1980; Landau
and Lifshitz, 1984; Tatarskii, 1961). In this work we restrict ourselves to the microwave
frequencies for which electromagnetic properties of the atmosphere are close to the corresponding
properties of free space, e. g. we neglect effects due to dispersion, absorption and scattering. In
this case Maxwell’s equations can be reduced to the simple wave equation (Landau and Lifshitz,
1984), a solution of which at range R  from the antenna for the source function (1) has the form

P t P G t R cR( , ) ( ) ( / )n nn= −0 0 δ . (4)
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2.2 STAGE 2: SIGNAL REFLECTED FROM THE SURFACE

Let us consider an elementary surface with an area dS  in the footprint region. The angular
coordinates of this surface are determined by the vector n (e.g. by the angles θ µ= −cos 1  and µ ).
We denote ns  as a unit vector normal to this elementary surface and directed towards the
atmosphere. Let us denote the projection of the elementary surface area on the horizontal plane as
dS dSxy s p= n n  , where n p   is a unit vector normal to the horizontal plane, and the elevation of the

elementary surface from the average level of the Earth in the footprint region as h . In this case the
energy of the microwave radiation which falls on the elementary surface dS  will be

dP P d
P

R
dS

P

R
dS P G t

R

c
ds R s

R
s

R
xy s= ≡ − ≡ = −Ω µ δ Ω2 2 0 0( ) ( ) ( )n n nn , (5)

where d d d d dsΩ ϕ µ ϕ θ θ= ≡ sin  is a solid angle differential element and R H h= −( ) / µ  is the
range from the antenna to the elementary surface dS .

We denote as G ts s( , )nn  the Green function which is the medium response to an infinitely

narrow, infinitely short unit power microwave pulse directed at an angle cos ( )−1 nns  to the normal
to the elementary surface. In this case the signal reflected from the surface will be

dP t P G G t
R

c
ds

B
s s( ) ( ) ( , )= −0 0nn nn Ω . (6)

2.3 STAGE 3: SIGNAL FROM ELEMENTARY SURFACE INTERCEPTED BY RADAR

The signal from the elementary surface dS  detected by the antenna will be
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where Ae is the receiving effective area of the radar antenna. According to Skolnik (1980) it is
equal to

A P Ge =
λ
π

2

0 04
( )nn , (8)

where λ   is the wavelength of the microwave radiation. Consequently
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where we introduce a time delay R c/ , which can be obtained after solving the wave equation with
a source function given by Eqn. (6).

After integration over the solid angle d sΩ  we obtain the signal intercepted by the radar
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2.4 STAGE 4: INTEGRATION OF INTERCEPTED SIGNAL OVER RANDOM SURFACE

In  Eqn. (10) we have shown the formal dependence of the elementary surface height h sΩ( )
and a normal to it ns sΩ( )  on the angles Ω µ ϕs ≡ ( , ) over which this surface is observed. Actually

the values h  and ns  should be considered as independent (of Ωs) random values. Because the
radar receiver integrates signals from the immense number of elementary surfaces situated in a ring
footprint  and further processing usually involves averaging over a number of pulses (100, for
example), which is equivalent to averaging over footprints, we could replace the Green function
Gs  in Eqn. (10) by the following average Green function:
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where f h( )  is the height distribution function of the elementary surfaces (Bass and Fuks, 1979)

and ˜ ( )F sn  is the distribution function of these surfaces over orientation angles. These functions are
normalized according to the following conditions:

f h dh F ds s( ) , ˜ ( )= =∫∫ 1 1n n . (12)

Using the fact that h H<<  and also taking into account Eqn. (11), we obtain
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After inserting into Eqn. (13) the functional dependence of the gain on nn0  given by Eqn.(2) and

integrating over azimuth angle ϕ , taking into account that θ 2 2 1<< , θ0 1<< , we obtain
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where I x x s
s

s s
0

0

2 2 22( ) ( !)= [ ]
=

∞

∑   is the zero-order modified Bessel’s function (Arfken, 1985).
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2.5 STAGE 5: GENERAL TIME ENVELOPE FUNCTION FOR SOUNDING PULSE

In the case when the time envelope of the sounding pulse is described by a function ˜ ( )E t ,

 ˜ ( )E t dt∫ =( )1 , due to the linearity of Maxwell’s equations, the detected microwave signal will be

a convolution of ˜ ( )E t  with P tB
δ ( )  given by Eqn.(14), i.e.

P t E t P t E t t P t dtB B B( ) ˜ ( ) ( ) ˜ ( ) ( )= ⊗ ≡ − ′ ′ ′
∞

∫δ δ

0

. (15)

Consequently, Eqn. (14) reduces the problem of calculating the time envelope of the radar
pulse reflected from the natural surface to the problem of finding the Green function of the medium
illuminated by an infinitely narrow short microwave pulse.

Some success in solving similar problems has been achieved in optics in the works dealing
with the calculation of the functional dependence of a light pulse reflected from scattering and
absorbing media (Zege, Ivanov and Katsev, 1991). Because the depth of penetration of microwave
radiation with frequencies of the order of 14 GHz { }λ ≈ 2cm  into snow and ice covers is much
greater than the wavelength λ , we can use optical methods and, in particular, radiative transfer
theory, for calculating the microwave pulse return from these surfaces.

3.0 EXAMPLES OF RADAR PULSE RETURN FROM SURFACES
WITH A SIMPLE GREEN FUNCTION

Here we restrict ourselves to a simple form for the Green function. We consider the radar
pulse reflection from rough surfaces made up of highly absorptive substances, such as very saline

broken ice, which are not specularly reflecting. For these cases ˜ ( ) /F sn = 1 2π , and the mean
Green function will be given by the following equation
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where Am  is the surface albedo with respect to microwave radiation: A dm m= ∫2
0

1
ρ µ µ µ( ) , and

ρ µm ( ) is the reflection coefficient of a non-polarized microwave plane wave falling on the surface

at an angle cos−1 µ .
By introducing t H cH = 2 / ,  t t ts H= −   and integrating Eqn. (16) over h , we have:
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. (17)

After inserting Eqn. (17) into Eqn. (14) we get:
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P h e f h y I q py e dyq py

a
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2

0 0
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1

4 , (18)

where P P PB( ) ( ) / *τ τδ= 0 ,  τ = = −t t t t ts G H G/ ( ) / ,   t H cG = =θ 2 /  520 n s e c ,

P A P c Hm0 0
2 3 2 2 34*= ( )[ ]λ π θ   (for λ= 2.14 cm , θ 2 0 8 0 014= ≈. . ,o rad  H = 800 km ,

P 0
*≈5.63 10-17 sec-1× A Pm 0); h0  is the maximum amplitude of the function f h( )  q = θ θ0

2 2/ ,

p h H= ( )2 0
2θ and a p= −min( , / )1 τ . When deriving Eqn. (18) we have taken into account

that f h( ) = 0  when h h≥ 0 . Let us calculate P( )τ  for the three simple cases.

3.1 VERY SALINE BROKEN ICE WITH SMALL-SCALE ROUGHNESSES h0 << λ
(DULL EVEN SURFACE WITHOUT SPECULARLY REFLECTING PARTS).

In this case we can accept the approximation: f h h( ) ( )= δ , and Eqn. (18) yields

P I q qD( ) exp ( )τ τ τ= ( ) − +[ ]0 4 2 . (19)

3.2 VERY SALINE BROKEN ICE WITH ARBITRARY-SCALE ROUGHNESS.

This case can be represented with the following distribution function:
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Substituting this distribution function into Eqn. (18), we get

P e
y

I q py e dyh
q py

a

( ) cos ( )( )τ π ττ= +( )⌠
⌡

− + −2 2
0

2

1

2
4 , (21)

where a p= −min( , / )1 τ .

Figures 1-3 show the time dependence of the radar signal reflected from these surfaces.
Calculations have been made for the following viewing angles: θ0 =  0°, 0.2°, 0.4°, 0.6°, 0.8°, 1°
and 1.2°, and roughness amplitudes h0  = 0 m, 0.3 m, 0.9 m, 2.7 m and 8.1 m, which correspond
to time delays of t h c0 02= =/  0 nsec, 3 nsec, 6 nsec, 18 nsec and 54 nsec.



Vladimir I. Haltrin,
“An Algorithm for Remote Radar Real-Time Assessment of the Roughness of Earth’s Natural Surfaces”

III-273

Fig. 1. Radar pulse return from an even, dull Fig. 2. The same as Fig. 1, only for large τ .
surface made of a highly absorbing substance
for different viewing angles θ0.

Fig. 3. The transformation of the reflected Fig. 4. Radar Pulse response from two-level
pulse front with respect to different scales of surfaces with different values of parameter α .
roughness h0 .
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3.3 TWO-LEVEL SURFACE OF VERY SALINE ICE WITHOUT SPECULARLY
REFLECTING SURFACES AND WITH SMALL-SCALE ROUGHNESS ( )h0 << λ .

We represent the distribution function of the two-level surface in the following form:

f h h h h h( ) ( ) ( ) ( )= − + − +αδ α δ0 01 , (22)

whereα  is that portion of the total surface which constitutes the higher level. In this case the radar
pulse response can be expressed by the equation

P e p e I q p p e I q pq p p( ) ( ) ( ) ( ) ( ) ( )( )τ αθ τ τ α θ τ ττ= + +( ) + − − −( )[ ]− + −2 2
0

2
04 1 4 . (23)

Illustrations of this case are shown in Figs. 4-6.

We do not see major difficulties for calculating the radar pulse response from moderately
absorbing and scattering substances and from surfaces with a specular reflection. For the first case,
instead of a Dirac’s delta function in Eqn.(16) we have to use the exact expression for the time
dependence of the reflected pulse, which will depend on the absorption and scattering properties of
the medium. These values are functionals of the characteristics of particles, such as their complex
dielectric permittivities, their fractional concentrations, and their size distribution functions. For the
second case we have to take into account the highly anisotropic behavior of the Green function.
This behavior will result in the appearance of very narrow (on the order of several nanoseconds)
peaks at the values of τ = 0  (shown in figures 2 and 3) in the responses. These peaks correspond
to the location of the specularly reflecting surfaces.

We have shown that only in the first and third cases (the simplest ones) of salted ice with
small-scale surface roughness can the reflected microwave pulse registered by the radar receiver be
expressed by an analytical expression. And this can only be done when the sounding signal has a
delta-function time envelope. In the more complex case of broken saline ice with the simplest
approximation of the average Green function (case 3.2) the result is given by an integral over the
product of exponential, Bessel’s and height distribution functions. In the cases of complex, many-
layered and uneven snow-and-ice surfaces, expressions for the reflected microwave pulse should
be much more cumbersome.

4.0 CONCLUSION

We have derived an analytical expression, Eqn. (14), which connects the value of a pulse
microwave signal, reflected from a statistically random reflecting snow-and-ice surface and

detected by radar, with the sounding geometrical parameters θ θ0 0
2,   and with the characteristics

of the sounding medium G̃s . Under the assumptions of a transparent atmosphere this equation is

valid for narrowly-directed θ 2 1<<( )  microwaves characterized by a Gaussian-gain shape,

close to nadir viewing angles θ0 1<<( ) and statistically independent characteristics of the
underlying surface. We have not considered here time-dependent fluctuations of the surface
characteristics (Anonymous, 1946). In  the case  of satellite sounding over a large observation area
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Fig. 5. Radar Pulse response from two-level Fig. 6 Radar Pulse response from two-level
surfaces with different values of parameter α . surfaces with different values of parameter α .

they can be neglected. The derivation of Eqn. (14) was made in successive stages, each adopting a
simplifying assumption. The approach used here permits us to separately improve every stage of
the calculations if it proves to be necessary.

We believe that in the sense of achieving better precision in the  calculation of return signals
and developing algorithms for the interpretation of the forms of these signals the most important
stage for improvement is the ground stage. It can consist of two parts:

1) developing electromagnetic models of the snow-and-ice covers suitable for use in radiative
transfer problems; and,

2) developing theories of reflection of the narrow electromagnetic beams from snow-and-ice
layers.

The very concise and simplified analysis of radar pulse propagation made here convinces us
that the final solution to the problem of creating software for the processing and interpretation of
spaceborne radar sounding of snow-and-ice surfaces is a very complex and labor-consuming goal,
but an achievable one.
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