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ABSTRACT

The scattering coefficient of water as a function of concentration of
hydrosol particles is calculated. The approach used is based on the Maxwell’s
equations in a stochastically scattering water. The water is modeled as
thermally fluctuated medium filled with the hydrosol particles. It is found that
the scattering coefficient quadratically depends on concentration when the
concentration of scatterers is very small. The scattering coefficient is linear to
concentration of scatterers at values typical to the open ocean. At the values of
concentrations typical to coastal waters the dependence on concentration
weakens and reaches the saturation at very high values.

INTRODUCTION

In a majority of publications available today the light scattering coefficient by water is
considered as linearly dependent on concentrations of hydrosols. The experiments by Prieur and
Sathyendranath (1981) show that at certain concentrations of chlorophyll CC , typical to coastal
waters, the dependence of water absorption coefficient on CC  is nonlinear. Clark and Backer
(1980) showed that the scattering coefficient of water is non-linearly dependent on chlorophyll
concentration that is strongly correlated to the concentration of scattering matter of biologic origin.

In this paper an attempt is made to develop an approach to calculate the scattering coefficient of
water as a function of concentration of hydrosol particles Cp . The approach is based on the
solutions of the Maxwell’s equations in a stochastically scattering medium (water). The water is
modeled as thermally fluctuated medium filled with the hydrosol scatterers.

The result of this paper are Eqns. (46)-(47) for the water scattering coefficient. The scattering
coefficient b  is linear with concentration of scattering particles at values typical to the open ocean.
The coefficient quadratically depends on the concentration when the concentration is very small
(typical for the Sargasso Sea waters). At the concentrations close to the values that are typical to
coastal waters, the dependence on concentrations weakens and reaches saturation at very high
values. The results of this paper can explain some experimental data obtained in turbid coastal
waters.
                                                                           
* Presented at the Twelfth International Conference and Workshops on Applied Geologic
Remote Sensing, Denver, Colorado, 17-19 November 1997.
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APPROACH

The radiative transfer theory, predominantly used in ocean optics, cannot explain nonlinear
dependence of inherent optical properties on concentration of scatterers (Haltrin, 1985; Haltrin and
Kattawar, 1993; Haltrin, and Weidemann, 1996; Haltrin, 1997). To investigate this problem we
should start from the Maxwell’s equations in stochastically scattering medium. The mathematical
formalism of scattering in stochastic medium is identical to the formalism of quantum statistical
mechanics (Gould, 1967; Frish, 1968). The photons  themselves are always quantum particles.
For these reasons we have chosen to use the quantum-mechanical statistical approach formulated
by Abrikosov, Gorkov and Dzyaloshinski (1963).

In this paper the scattering coefficient on hydrosol particles is calculated through the dielectric
permittivity of the hydrosol component in the water. The dielectric permittivity is a constituent part
of the Fourier transform of the Green’s function of the Maxwell’s equations in water. By
definition, the Green’s function is a solution of these equations when a source function is assumed
as an infinitely short and localized at one point light pulse (Morse and Feshbach, 1953; Haltrin,
1977; Haltrin, 1980).

INTERACTION HAMILTONIAN

Let us use the standard method of the derivation of the interaction Hamiltonian. The change
in the energy E of water after injunction of hydrosol particles is

δ π δE d r t t= − ∫( ) ( , ) ( , )4 1 3 E r D r , (1)

here E r( , )t  is the electric field, δD r( , )t  is the change in the electric induction D r( , )t  related to the
difference of the dielectric permittivity of hydrosol particles from the dielectric permittivity of
surrounding water, r  is a spatial coordinate, t is time. The electric induction inside hydrosol
particle is (Landau and Lifshitz, 1960):

D r E r E rm mt t f t t t dt( , ) ( , ) ( ) ( , )= + ′ − ′ ′
∞

∫0
, (2)

here m denotes a number of the particle, the function fm determines the dispersion properties of the
mth hydrosol particle.  For further convenience let us introduce the following  Heavyside-type
function (Morse and Feshbach, 1953):
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that is equal to one inside mth particle and equal to zero outside (here rm is a vector that points to
the gravity center of the mth particle, Vm  is the volume of the mth particle). Using function Hm, let
us write down the change in the energy of the water caused by injunction of hydrosols. The change
in electric induction is

δ δD r r E r( , ) ( , ) ( , )t f t t t dt= ′ − ′ ′
∞

∫0
, (4)

δf t H f t f tm m m m wm
( , ) ( ) ( ) ( )r r r′ = − ′ − ′[ ]∑ , (5)

here f tw ( ) is a dispersion function of the water without hydrosols. The angular brackets ... m

denote averaging over all possible positions of rm. The summation is made over all hydrosol
particles in the water volume V0 .

The distribution function of hydrosol particles can be represented as a series over the powers
of water density
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F t t t( , ) ( , ) ( / ) ( , ) ...r r r≅ + +α ρ β ρ2 2 ,   F t d r( , )r 3 1∫ = . (6)

Let us keep only the first term in (6), then
F t t V V t V( , ) ( , ) ( ) ( , ) ( )r r r≅ = +−ρ ρ δρ ρ0 0 0

1
0 0 , (7)

here ρ ρ0 0
1 3= ∫−V t d r( , )r  is the average water density in the volume V0 , δρ ρ ρ( , ) ( , )r rt t= − 0  is

the fluctuation of the water density. So, we have

H F t H d r C V t H d rm m m m m m( ) ( , ) ( ) ( ) ( , ) ( )r r r r r r r r− = ′ − ′ ′ = + − ′∫∫ −3
0 0

1 3ρ δρ , (8)

here C V Vm m= / . In this case

δ ρ δρf t C f t f t t v t d rm m wm
( , ) ( ) ( ) ( , ) ( , )r r r r′ = ′ − ′[ ]+ ′ ′ − ′ ′ ′∑ ∫−

0
1 3 , (9)

v t V H f t f tm m wm
( , ) ( ) ( ) ( )r r= −[ ]− ∑0

1 . (10)
For the changes in the electric induction we have,

δ δ δD r D r D r( , ) ( , ) ( , )t t ts= +0 , (11)
here δD r E r0 0

( , ) ( ) ( ) ( , )t C dt f t f t t tm m wm
= ′ ′ − ′[ ] − ′∫

∞∑ , (12)

δ ρ δρD r r r r E rs t dt d r t v t t t t( , ) ( , ) ( , ) ( , )= ′ ′ ′ − ′ − ′ − ′∫∫− ∞
0

1 3
0

. (13)
The first correction term in Eqn. (11) is not connected with scattering. It determines correction to
the water dielectric permittivity due to introduction of hydrosols. Later we incorporate this term
into the original water dielectric permittivity by renormalizing its value.

When the volume concentration of hydrosol particles is small C CV mm
≡ <<( )∑ −10 3  it is

possible to neglect dispersion properties of particles. In this case we have
f t f t tm w m w( ) ( ) ( )− ≅ −( ) +ε ε δ0 0 . (14)

Here εm  is the dielectric permittivity of the mth hydrosol particle, ε0w  is the dielectric permittivity
of the water without particles, and δ ( )t  is the Dirac’s delta. Taking into account Eqn. (14), we
have

v t C th V( , ) ( ) ( )r r= +δε δ∆ 0 , (15)

δε ε ε ε ε ε εh V m w m V m m wmm h wC C C C= −( ) = − = −− − ∑∑1
0

1
0 0 , (16)

∆( ) ( )r r= ( ) −( )− ∑δε ε εh V m w mm
C V H0

1

0 ,   ∆( )r d r3 1∫ = . (17)
Let us express water density fluctuation through the parameters of the phonon field. From the

continuity equation
∂ρ

∂
ρ( , )

div ˙ ( , ) ( , )
r

q r r
t

t
t t+ [ ] = 0, (18)

here ˙ ( , )q r t  is a fluctuation coordinate. In the first approximation over δρ( , )r t  (Abrikosov,
Gorkov, Dzyaloshinski, 1963) we have the following equation

δρ
ρ

ϕ
ρ

( , )
div ( , )

( , )r
q r

rt
t

t

u0 0 0

= − = − , (19)

here u0  is a velocity of the thermal fluctuation in water (with the linear phonon dispersion law:

ω0 0( )k k= u , where k  is the phonon’s momentum), ϕ( , )r t  is a function that determines a high-
frequency phonon field. By substituting Eqns. (13), (15) and (17) into Eqn. (1), we have for the
change of energy
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δ δε
π ρ

ϕE
C

u
d r t d r t th V= − ′ − ′ ′ ′∫ ∫4 0 0

3 3E r r r r E r( , ) ( ) ( , ) ( , )∆ . (20)

Let us express electric field E r( , )t  through the potentials of electromagnetic field

E r
A r

r( , )
( , )

grad ( , )t
c

t

t
t= − −1 ∂

∂
Φ . (21)

Here A  is the vector potential, and Φ  is the scalar potential, c is the speed of light. We accept the
calibration with Φ = 0 . Hydrosol particles in this model are perceived as small potentials in a
Brownian motion. They are characterized by the size distribution function: ϕ ϕ( )  ( ( ) )a a da0 1∞∫ = .
Such a model allows one to derive the operator of thermal density fluctuations ψ̂ . Let us introduce
the following dimensionless parameters,

ψ
π

ϕ( , ) ( ) ( , )r r r rt
a

T
d r t= ′ − ′ ′∫1

4

3
3 ∆ ,   ∆( )

( )

( )
r =

∞

∞∞
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4 2

0

(22)

g CV= γ ,   γ δε
ρ

= ≈ ÷h

T

a u3 2
3 510 10 (23)

here a a a da= ∫∞ϕ( )0  is a mean radius of hydrosol particles, T  is the absolute temperature in
Kelvins.

Now we have the formula for the interaction Hamiltonian between photons and thermal density
fluctuations:

ˆ ( )
ˆ ( , ) ˆ ( , )

ˆ ( , )
,  int , ,H t
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A t
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t

A t
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= − ⌠
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=2

3
1 2 3

∂
∂

ψ ∂
∂

α α α
r

r
r

, (24)

here Âα  is a photon field operator that corresponds to a vector potential of light wave, index α
denotes vector’s component. Repeating indices everywhere in this article imply summation.

GREEN’S FUNCTION

Let us write a Green’s function of photons propagating in a nonscattering medium with the
dielectric permittivity ε0 . It can be represented as a sum of the transverse and longitidinal
components (Landau and Lifshitz, 1960; Haltrin, 1980). In the energetic-momentum representation
the Green’s function has the following form:

D D n n D n ntr l
αβ αβ α β α βω ω δ ω( ) ( , ) ( , )( ) ( , )0

0 0k k k= − + , (25)
where

D
c k

D
ctr l

0
0

2 2 2 0

2

0
2

4 4
( , )

/
,  ( , )ω π

ε ω
ω π

ε ω
k k=

−
= , (26)

nα  is the component of the unity vector in the direction of k , δαβ  is the Kroneker’s symbol or the
unity tensor.

The Green’s function of photon field, that includes multiple scattering due to the interaction
with thermal fluctuations described by the Hamiltonian (24), can be written as:

D D n n D n ntr l
αβ αβ α β α βω ω δ ω( , ) ( , )( ) ( , )k k k= − + , (27)
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2 2 2

2

2 , (28)
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here ε tr  and ε l  are, correspondingly, the transverse and the longitidinal components of the
dielectric permittivity tensor:

ε ω ε ω δ ε ωαβ αβ α β α β( , ) ( , )( ) ( , )k k k= − +tr ln n n n . (29)

It is clear from Eqns (27)-(29) that the problem of finding the dielectric permittivity is
equivalent to the problem of finding the Green’s function.

Let us calculate the multiple scattering Green’s function and the corresponding dielectric
permittivity. As a starting zero approximation let us take the Green’s function (25) that corresponds
to the clear water. The dielectric permittivity of the clear water depends only on the circular
frequency ω :

ε ω ε ω δ ε ω δ ε ωαβ αβ αβ α β α β
0

0 0 0( ) ( ) ( )( ) ( )= ≡ − +n n n n . (30)

It means that Eqn. (30) takes into account only temporal dispersion that is determined by the
processes of absorption and emission of photons by the water molecules.

The transverse and longitidinal components of the water dielectric permittivity that takes into
account processes of multiple scattering on the hydrosol particles can be expressed as:
ε ω ε ω δ ε ω ε ω ε ω δ ε ω ε ω ε ω ε ωtr tr l l i( , ) ( ) ( , ),    ( , ) ( ) ( , ),    ( ) ( ) ( )k k k k= + = + = ′ + ′′0 0 0 0 0 , (31)

here ′ε0  and ′′ε0  are the real and the imaginary parts of the dielectric permittivity of pure water.

To calculate δ ε tr  and δ ε l  let us carry out the standard procedure (Abrikosov, Gorkov and
Dzyaloshinski, 1963; Haltrin, 1980) to calculate corrections to the Green’s function starting from
the Hamiltonian given by Eqn. (24).

The Green’s function of the photons in turbid water is expressed through the following
Dyson’s equation:

D D D D

gh d D h a
n n n n n

n n n n

αβ αβ αγ γµ µβ

αβ αγ γβ

ω ω ω π ω ω
π ω ω ω ω π

( , ) ( , ) ( , ) ( , ) ( , ),                             

( , ) ( ) ( , ) ( , , ),   ( ) .

( ) ( )k k k k k

k q q k q k q k

= +
= − − − =∫

0 0

3 2 3 4 52∆ Γ
(32)

where παβ  is the polarization operator, and Γγβ  is the total apex part that corresponds to the sum of
all orders of light scattering. The polarization operator is linked with the dielectric permittivity
tensor by the equation:

δ ε ω π ω π ωαβ αβ( , ) ( , )n n nk k= ( )4 2 . (33)

By resolving the Dyson’s equation (32) regarding Γαβ , we have the following integral equation for
the components of the apex part:

Γ ∆ Γ

Γ Γ
αβ αβ αµ

µη ην νκ κβ

δ( , ) ( ) ( , )

( ) ( , ) ( ) ( , ).

k p k q q k p k p q

k p q k p q k q k q k q k

− = + − − − ×

− − − − − − −
∫g h d

D D

3 2

(34)

In solving Eqn. (34) let us restrict ourselves to the scattering on large particles, 2 a >> λ . In this
case p q a k< < <<1/ . By representing the apex part as the sum of transverse and longitudinal
parts, as in Eqn. (29), integrating over q , and analytically expanding to the real frequency axis,
we obtain the following equations for the components of the apex part:

Γ Γ Γ Γtr tr l
l

lg
a

k c
g= + ( ) = + ( )

2 4

2 2 4

3

2 2

3

2
2

3
ω

π π ε
,     

( )
. (35)
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DIELECTRIC PERMITTIVITY

Let us derive equations that link corrections to the dielectric permittivity with the apex part.
Using Eqns. (30)-(33), integrating over q , and analytically transferring to the real frequency axis,
we have the following equations:

ε ε ω ω
π

ε ε
π ε

tr tr l
l

li g
a

k c

g= + = −0 2 0 216 6
Γ Γ,     . (36)

To have a closed system of equations let us add the dispersion relation taken from the Maxwell’s
equations:

k ctr2 2 2= ε ω / . (37)
Now we have two complete systems of equations for the complex parameters: ε tr  and ε l :

ε ε
π ε

l
l

lg= −0 26
Γ ,    Γ Γl

l
lg= + ( )2

3 2 2

3

π ε( )
, (38)

k
c

tr2
2

2= ε ω
,    ε ε

ε
tr

tr

tri gq= +0
16

Γ ,    Γ Γtr
tr

trg
q= + ( )

2
3

2ε
, (39)

here q a c= ω π . In the general case of arbitrary values of g  (which corresponds to the arbitrary
concentrations) the systems of equations (38) and (39) have no analytical solutions. For the value
of the parameter

g < ′4 2 30ε ,  C C g mV p< ⋅ <−2 10 23 3 (   )or , (40)
we have an approximate solution for the longitudinal component of the dielectric permittivity
tensor:

ε εl C
C

q
q= ′ − ( )













−
0

11
3

1
3

3sin sin , q
C k T

a uC
V h B=

′
δε

π ε ρ0
3 22

. (41)

Here C Cp V≡ ρ  is the concentration of hydrosol particles in conventional units ( )g m3 .

According to Eqn. (38) ε l  is determined only by the water properties. As it is seen from the
Eqns. (38)-(39) this is also true for any water turbidity. For the calculation of the transversal part
of the dielectric permittivity let us consider only the case of a weak attenuation of light. Let us write
the expression for the absolute value of the photon wave vector:

k k i a b= + +0 2( ) / , (42)
here k0  is the real part of the wave vector, a  is the absorption coefficient, and b  is the scattering
coefficient. The condition of weak attenuation a b k+ << 0  is equivalent to the following
conditions:

δ ε εtr << ′0,  or  C C g mV p< ⋅ <( )−2 10 23 3  . (43)
In this case the solution of Eqns. (39) for the transversal part of the dielectric permittivity is:

δ ε π ε ω
ζ ζ

ψ
ψ

ζε
ε

tr
Ci q= ′







<

+ ≥










−

16
3

4
1
3

1

1
1

0

1

sign
sin sin ,  ,

     ,    ,
(44)

where

ψ ζ ζε = − −23 1 ,   ζ δε
π ρ

ω=






3
4

6
2

2

0
2

C T

a u k c
V h . (45)
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SCATTERING COEFFICIENT

The light scattering coefficient b  is calculated by the substitution of Eqns. (44)-(45) into Eqns.
(37), (42). It has the following form:

b =





 <

− − +
− −

≥










−

ς
ς χ ς χ

ς χ ς χ
ς χ ς χ

ς χ

                     sin sin ( ) ,                 ,

     ,   ,

4
1
3

1

1
1

1
1

1

2 23

2 23

(46)

where

χ
π ρ

= 12 6
3 2

a T

a u
,  ς π

λ
δε
ε

=
′







CV
h

8 0

, (47)

here λ   is the wavelength of light in vacuum.
In the general case of the arbitrary values of the parameter g  (or arbitrary concentrations CV  or

Cp ) the systems of Eqns. (38)-(39) have no solutions in analytic form. However it is easy to solve
that system numerically.

At very small concentrations of particles ( . / )C mg mp < 0 03 3  the dependence b Cp( ) is
quadratic. At the concentrations typical to the open ocean the dependence is linear. At higher
concentrations ( / )5 50 3< <C mg mp  the dependence reminds the exprerimental one proposed by
Prieur and Sathyendranath (1981).

CONCLUSION

It is shown that the approach based on the Maxwell’s theory in a stochastically scattering
medium can be productively used in ocean optics. From the solutions of the Dyson’s equation the
dielectric permittivity tensor of water with the imbedded scattering particles is found. From the
equations for the dielectric permittivity a nonlinear dependence of the scattering coefficient of water
is derived. It is shown that the scattering coefficient of water nonlinearly depends on the
concentration of scatterers. The dependence is quadratic when the concentration of scattering
particles is very small. It is linear to the concentration of scatterers at values typical to the open
ocean. At the concentrations typical to the coastal waters the concentrational dependence weakens
and reaches saturation at values higher than 100 3g m/ .
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